Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli

Abstract

Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by adjusting the osmolality of their cytoplasm. To obtain insights into the underlying metabolic adaptations, we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using nontargeted mass spectrometry. We observed that 52% of 1,071 detected metabolites, including known osmoprotectants, changed abundance with increasing salt challenge. Unexpectedly, unsupervised data analysis showed a substantial increase of most intermediates in the ubiquinone-8 (Q8) biosynthesis pathway and a 110-fold accumulation of Q8 itself, as confirmed by quantitative lipidomics. We then demonstrated that Q8 is necessary for acute and sustained osmotic-stress tolerance using Q8 mutants and tolerance rescue through feeding nonrespiratory Q8 analogs. Finally, in vitro experiments with artificial liposomes showed that mechanical membrane stabilization is a principal mechanism of Q8-mediated osmoprotection. Thus, we find that besides regulating intracellular osmolality, E. coli enhances its cytoplasmic membrane stability to withstand osmotic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the salt-induced metabolic changes in E. coli by mass spectrometry.
Figure 2: The global metabolic response of E. coli to hyperosmotic stress.
Figure 3: The ubiquinone pool and its precursors increase upon osmotic stress.
Figure 4: Ubiquinone is required for osmotic-stress tolerance in vivo.
Figure 5: Ubiquinone enhances the stability of artificial liposomes.

Similar content being viewed by others

References

  1. Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Record, M.T. Jr., Courtenay, E.S., Cayley, D.S. & Guttman, H.J. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23, 143–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Vreeland, R.H. Mechanisms of halotolerance in microorganisms. Crit. Rev. Microbiol. 14, 311–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Krämer, R. Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem. Rec. 10, 217–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Piuri, M., Sanchez-Rivas, C. & Ruzal, S.M. Cell wall modifications during osmotic stress in Lactobacillus casei. J. Appl. Microbiol. 98, 84–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Wood, J.M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 65, 215–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Calamita, G., Bishai, W.R., Preston, G.M., Guggino, W.B. & Agre, P. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J. Biol. Chem. 270, 29063–29066 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Laimins, L.A., Rhoads, D.B. & Epstein, W. Osmotic control of kdp operon expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 464–468 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grothe, S., Krogsrud, R.L., McClellan, D.J., Milner, J.L. & Wood, J.M. Proline transport and osmotic stress response in Escherichia coli K-12. J. Bacteriol. 166, 253–259 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Weymarn, N., Nyyssölä, A., Reinikainen, T., Leisola, M. & Ojamo, H. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Appl. Microbiol. Biotechnol. 55, 214–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Giaever, H.M., Styrvold, O.B., Kaasen, I. & Strom, A.R. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841–2849 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elbein, A.D., Pan, Y.T., Pastuszak, I. & Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Klein, W., Ehmann, U. & Boos, W. The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase. Res. Microbiol. 142, 359–371 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Cayley, S. & Record, M.T. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J. Mol. Recognit. 17, 488–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Horta, B.A., Perić-Hassler, L. & Hünenberger, P.H. Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: a comparative molecular dynamics study. J. Mol. Graph. Model. 29, 331–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Pereira, C.S. & Hünenberger, P.H. Effect of trehalose on a phospholipid membrane under mechanical stress. Biophys. J. 95, 3525–3534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Landis, L., Xu, J. & Johnson, R.C. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Genes Dev. 13, 3081–3091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balsalobre, C., Johansson, J. & Uhlin, B.E. Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J. Bacteriol. 188, 5935–5944 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, B., Hohmann, S., Jensen, R.G. & Bohnert, H.J. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121, 45–52 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gunasekera, T.S., Csonka, L.N. & Paliy, O. Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J. Bacteriol. 190, 3712–3720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ejsing, C.S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 2136–2141 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Søballe, B. & Poole, R.K. Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146, 787–796 (2000).

    Article  PubMed  Google Scholar 

  24. Smirnova, G.V., Muzyka, N.G. & Oktyabrsky, O.N. The role of antioxidant enzymes in response of Escherichia coli to osmotic upshift. FEMS Microbiol. Lett. 186, 209–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kalir, A. & Poljakoff-Mayber, A. Changes in activity of malate dehydrogenase, catalase, peroxidase and superoxide dismutase in leaves of Halimione portulacoides (L.) aellen exposed to high sodium chloride concentrations. Ann. Bot. 47, 75–85 (1981).

    Article  CAS  Google Scholar 

  26. Stroobant, P., Young, I.G. & Gibson, F. Mutants of Escherichia coli K-12 blocked in the final reaction of ubiquinone biosynthesis: characterization and genetic analysis. J. Bacteriol. 109, 134–139 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanai, T., Takahashi, K. & Inoue, H. Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J. Biochem. 140, 703–711 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, G., Williams, H.D., Gibson, F. & Poole, K. Mutants of Escherichia coli affected in respiration: the cloning and nucleotide sequence of ubiA, encoding the membrane-bound p-hydroxybenzoate:octaprenyltransferase. J. Gen. Microbiol. 139, 1795–1805 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Pilizota, T. & Shaevitz, J.W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS ONE 7, e35205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paturej, J., Popova, H., Milchev, A. & Vilgis, T.A. Force-induced breakdown of flexible polymerized membrane. Preprint at http://arxiv.org/abs/1111.6719 (2012).

  31. Katsikas, H. & Quinn, P.J. The polyisoprenoid chain length influences the interaction of ubiquinones with phospholipid bilayers. Biochim. Biophys. Acta 689, 363–369 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Roche, Y., Peretti, P. & Bernard, S. Influence of the chain length of ubiquinones on their interaction with DPPC in mixed monolayers. Biochim. Biophys. Acta 1758, 468–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. De Rosa, M., Gambacorta, A. & Gliozzi, A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50, 70–80 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Konings, W.N., Albers, S.-V., Koning, S. & Driessen, A.J.M. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek 81, 61–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Jacquemet, A., Barbeau, J., Lemiègre, L. & Benvegnu, T. Archaeal tetraether bipolar lipids: Structures, functions and applications. Biochimie 91, 711–717 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Houssin, C., Eynard, N., Shechter, E. & Ghazi, A. Effect of osmotic pressure on membrane energy-linked functions in Escherichia coli. Biochim. Biophys. Acta 1056, 76–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Jensen, M.Ø. & Mouritsen, O.G. Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Stachowiak, J.C. et al. Membrane bending by protein-protein crowding. Nat. Cell Biol. 14, 944–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Haines, T.H. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 40, 299–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gruszecki, W.I., Smal, A. & Szymczuk, D. The effect of zeaxanthin on the thickness of dimyristoylphosphatidylcholine bilayer: X-ray diffraction study. J. Biol. Phys. 18, 271–280 (1992).

    Article  Google Scholar 

  41. Ma, Y. et al. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation. J. Biomed. Mater. Res. A 101, 1007–1015 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Gasser, D.L. et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am. J. Physiol. Renal Physiol. 305, F1228–F1238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziegler, C.G.K. et al. Parkinson's disease-like neuromuscular defects occur in prenyl diphosphate synthase subunit 2 (Pdss2) mutant mice. Mitochondrion 12, 248–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida, H., Kotani, Y., Ochiai, K. & Araki, K. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44, 19–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raetz, C.R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol. Rev. 42, 614–659 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolf, S., Schmidt, S., Müller-Hannemann, M. & Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kankainen, M., Gopalacharyulu, P., Holm, L. & Oresic, M. MPEA–metabolite pathway enrichment analysis. Bioinformatics 27, 1878–1879 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klinger, H. et al. Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp. Gerontol. 45, 533–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Karlsson, M. et al. Electroinjection of colloid particles and biopolymers into single unilamellar liposomes and cells for bioanalytical applications. Anal. Chem. 72, 5857–5862 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  53. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Zamboni for advice and assistance with MS/MS analyses, A. Kühne for assistance with microscopy and K. Kochanowski and T. Fuhrer for helpful discussions. Funding was provided by the MetaNetX project of the Swiss Initiative for Systems Biology (SystemsX.ch; http://metanetx.org/) evaluated by the Swiss National Science Foundation, and the Swiss Federal Government through the Federal Office of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

D.C.S. performed the experiments and analyzed the data. D.C.S. and U.S. designed the research and wrote the paper.

Corresponding author

Correspondence to Uwe Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–7. (PDF 2894 kb)

Supplementary Data Sets 1–3

Supplementary Data Set 1 contains the intensity values of annotated ions in the metabolomics data set, normalized and log2-transformed to the 50 mM condition and filtered for ions showing at least a 2-fold change in the 500 mM condition. Supplementary Data Set 2 lists the metabolite annotation of each ion in the metabolomics experiments (Supplementary Data Set 1), with the electrospray modification indicated in square brackets. All metabolites differ less than 0.001 Da from the theoretical mass. The KEGG eco metabolite database was used as annotation reference. Supplementary Data Set 3 contains the intensity values of ions detected in the the lipidomics experiment, shown as fold-change values of the 450 vs. 50 mM NaCl experiments and filtered for ions showing at least a 2-fold change. P-values were calculated by two-sided t-tests assuming unequal variance. Additionally, lipid annotations of the ions are listed with electrospray modifications given in square brackets. Lipid ions differ less than 0.001 Da from the theoretical mass in the KEGG eco metabolite database. (XLSX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sévin, D., Sauer, U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10, 266–272 (2014). https://doi.org/10.1038/nchembio.1437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1437

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology