Brief Communication | Published:

A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation

Nature Chemical Biology volume 10, pages 9395 (2014) | Download Citation

Abstract

N6-methyladenosine (m6A) is the most prevalent and reversible internal modification in mammalian messenger and noncoding RNAs. We report here that human methyltransferase-like 14 (METTL14) catalyzes m6A RNA methylation. Together with METTL3, the only previously known m6A methyltransferase, these two proteins form a stable heterodimer core complex of METTL3–METTL14 that functions in cellular m6A deposition on mammalian nuclear RNAs. WTAP, a mammalian splicing factor, can interact with this complex and affect this methylation.

  • Compound C15H20D3N6O5S+

    S-(5′-Adenosyl)-L-methionine-d3

  • Compound C11H12D3N5O4

    N6-Methyl-d3-adenosine

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Gene Expression Omnibus

References

  1. 1.

    in Fine-Tuning of RNA Functions by Modification and Editing Vol. 12 (ed. Grosjean, H.), 141–177 (Springer-Verlag, Berlin Heidelberg, 2005).

  2. 2.

    , & Trends Genet. 29, 108–115 (2013).

  3. 3.

    & Wiley Interdiscip. Rev. RNA 2, 611–631 (2011).

  4. 4.

    & Mol. Biol. 113, 165–179 (1977).

  5. 5.

    et al. Nat. Chem. Biol. 7, 885–887 (2011).

  6. 6.

    et al. Mol. Cell 49, 18–29 (2013).

  7. 7.

    et al. Nature 485, 201–206 (2012).

  8. 8.

    et al. Cell 149, 1635–1646 (2012).

  9. 9.

    , , , & RNA 3, 1233–1247 (1997).

  10. 10.

    , , & Nucleic Acids Res. 30, 4509–4518 (2002).

  11. 11.

    & Proc. Natl. Acad. Sci. USA 108, 14855–14860 (2011).

  12. 12.

    et al. Plant Cell 20, 1278–1288 (2008).

  13. 13.

    , , & J. Mol. Evol. 55, 431–444 (2002).

  14. 14.

    et al. Proc. Natl. Acad. Sci. USA 103, 17278–17283 (2006).

  15. 15.

    , , & PLoS Genet. 8, e1002732 (2012).

  16. 16.

    , , , & J. Biol. Chem. 269, 17697–17704 (1994).

  17. 17.

    et al. Cell 141, 129–141 (2010).

  18. 18.

    et al. Nature (27 November 2013).

  19. 19.

    et al. Cell 155, 793–806 (2013).

  20. 20.

    et al. Nat. Protoc. 7, 2159–2170 (2012).

  21. 21.

    & Mol. Cell. Biol. 5, 2298–2306 (1985).

  22. 22.

    & J. Microsc. 224, 213–232 (2006).

  23. 23.

    et al. J. Vis. Exp. 41, e2034 (2010).

  24. 24.

    et al. Nat. Protoc. 8, 176–189 (2013).

  25. 25.

    et al. Nature 492, 382–386 (2012).

  26. 26.

    et al. Genome Biol. 9, R137 (2008).

Download references

Acknowledgements

This study was supported by US National Institutes of Health (GM071440 and GM088599). We thank P. Faber and L. Dore for helping with high-throughput sequencing experiments and S.F. Reichard for editing the manuscript.

Author information

Author notes

    • Jianzhao Liu
    •  & Yanan Yue

    These authors contributed equally to this work.

Affiliations

  1. Department of Chemistry, University of Chicago, Chicago, Illinois, USA.

    • Jianzhao Liu
    • , Yanan Yue
    • , Dali Han
    • , Xiao Wang
    • , Ye Fu
    • , Liang Zhang
    • , Guifang Jia
    • , Miao Yu
    • , Zhike Lu
    • , Xin Deng
    • , Qing Dai
    • , Weizhong Chen
    •  & Chuan He
  2. Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.

    • Jianzhao Liu
    • , Yanan Yue
    • , Dali Han
    • , Xiao Wang
    • , Ye Fu
    • , Liang Zhang
    • , Guifang Jia
    • , Miao Yu
    • , Zhike Lu
    • , Xin Deng
    • , Qing Dai
    • , Weizhong Chen
    •  & Chuan He

Authors

  1. Search for Jianzhao Liu in:

  2. Search for Yanan Yue in:

  3. Search for Dali Han in:

  4. Search for Xiao Wang in:

  5. Search for Ye Fu in:

  6. Search for Liang Zhang in:

  7. Search for Guifang Jia in:

  8. Search for Miao Yu in:

  9. Search for Zhike Lu in:

  10. Search for Xin Deng in:

  11. Search for Qing Dai in:

  12. Search for Weizhong Chen in:

  13. Search for Chuan He in:

Contributions

C.H. conceived the project. J.L. and Y.Y. designed and performed most experiments. D.H. and Z.L. performed high-throughput sequencing data analyses. X.W. and Y.F. helped perform the PAR-CLIP experiment, biochemistry assay and data analysis. L.Z. and M.Y. assisted in expressing recombinant proteins in insect cells. G.J. and W.C. participated in subcloning. X.D. participated in nuclear extract separation. Q.D. synthesized the d3-m6A standard for LC/MS/MS analysis. J.L., Y.Y. and C.H. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Chuan He.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results, Supplementary Figures 1–15, Supplementary Tables 1–12 and Supplementary Notes 1–4.

Excel files

  1. 1.

    Supplementary Data Set 1

    Summary of METTL3 target genes based on 4SU-PAR-CLIP

  2. 2.

    Supplementary Data Set 2

    Summary of METTL14 target genes based on 4SU-PAR-CLIP

  3. 3.

    Supplementary Data Set 3

    Summary of WTAP target genes based on 4SU-PAR-CLIP

  4. 4.

    Supplementary Data Set 4

    Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon METTL3 knockdown (P < 0.05)

  5. 5.

    Supplementary Data Set 5

    Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon METTL14 knockdown (P < 0.05)

  6. 6.

    Supplementary Data Set 6

    Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon WTAP knockdown (P < 0.05)

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.1432

Further reading