Brief Communication | Published:

A natural ribozyme with 3′,5′ RNA ligase activity

Nature Chemical Biology volume 5, pages 9799 (2009) | Download Citation

Subjects

Abstract

Using electrophoresis, sequencing and enzymatic digestion, we show that the group I intron from the cyanobacterium Anabaena sp. PCC 7120 catalyzes phosphodiester bond formation using a triphosphate on the 5′-terminal nucleotide, much like protein polymerases and engineered ribozymes. In the process, this ribozyme forms a unique circular RNA that incorporates the exogenous guanosine cofactor added during self-splicing. This finding may have relevance to a prebiotic RNA world and to modern biology.

  • Compound

    Guanosine

  • Compound

    Guanosine 5′-monophosphate

  • Compound

    Guanosine 5′-diphosphate

  • Compound

    Guanosine 5′-triphosphate

  • Compound

    [alpha-32P] Guanosine 5′-triphosphate

  • Compound

    [gamma-32P] Guanosine 5′-triphosphate

  • Compound

    Guanylyl-2′,5′-guanosine-3′-monophosphate

  • Compound

    Guanosine 3′-monophosphate

  • Compound

    5′-Monophosphate-guanylyl-3′,5′-guanosine

  • Compound

    5′-Monophosphate-guanylyl-2′,5′-adenosine

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in The RNA World 1st edn (eds. Gesteland, R.F. & Atkins, J.F.) 239–269 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993).

  2. 2.

    , & Nature 301, 578–583 (1983).

  3. 3.

    et al. RNA 9, 1464–1475 (2003).

  4. 4.

    , , , & RNA 14, 2013–2029 (2008).

  5. 5.

    , , , & Science 250, 1566–1570 (1990).

  6. 6.

    , & Biochemistry 32, 7946–7953 (1993).

  7. 7.

    , & in Laboratory Techniques in Biochemistry and Molecular Biology: Analysis of RNA-Protein Complexes In Vitro (ed. van der Vliet, P.C.) 181–232 (Elsevier, Amsterdam, The Netherlands, 1998).

  8. 8.

    & Science 261, 1411–1418 (1993).

  9. 9.

    Angew. Chem. Int. Edn Engl. 46, 6420–6436 (2007).

  10. 10.

    et al. Mol. Cell 8, 201–211 (2001).

  11. 11.

    , , , & RNA 10, 1900–1906 (2004).

  12. 12.

    & Genome Biol. 8, 210 (2007).

  13. 13.

    et al. EMBO J. 27, 667–678 (2008).

  14. 14.

    & Biochemistry 35, 3754–3763 (1996).

  15. 15.

    Trends Biochem. Sci. 23, 491–495 (1998).

  16. 16.

    & in Biochemistry (ed. Zubay, G.) 1120–1152 (Macmillan, New York, 1988).

  17. 17.

    & Tetrahedron 34, 853–855 (1978).

  18. 18.

    , & Cell 70, 803–810 (1992).

  19. 19.

    , & Proc. Natl. Acad. Sci. USA 96, 14712–14717 (1999).

  20. 20.

    Proc. Natl. Acad. Sci. USA 83, 4360–4363 (1986).

  21. 21.

    , & Cell 23, 467–476 (1981).

Download references

Acknowledgements

We thank A. Zaug for experimental suggestions and insightful discussions; A. Gooding (Howard Hughes Medical Institute) for preparing the T7 RNA polymerase; D. Zappulla (Johns Hopkins University) for the gift of RNase A; the remaining members of the Cech laboratory, as well as H. Nielsen, O. Uhlenbeck, S. Silverman and M. Caruthers, for helpful discussions; and H. Nielsen, S. Silverman, A. Gooding and A. Zaug for careful reading of the manuscript.

Author information

Affiliations

  1. Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309-0215, USA.

    • Quentin Vicens
    •  & Thomas R Cech

Authors

  1. Search for Quentin Vicens in:

  2. Search for Thomas R Cech in:

Contributions

Q.V. and T.R.C. designed the study and wrote the manuscript; Q.V. performed the experiments.

Corresponding author

Correspondence to Quentin Vicens.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–9 and Supplementary Methods

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.136

Further reading