Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic

Abstract

Hydrogenases catalyze the formation of hydrogen. The cofactor ('H-cluster') of [FeFe]-hydrogenases consists of a [4Fe-4S] cluster bridged to a unique [2Fe] subcluster whose biosynthesis in vivo requires hydrogenase-specific maturases. Here we show that a chemical mimic of the [2Fe] subcluster can reconstitute apo-hydrogenase to full activity, independent of helper proteins. The assembled H-cluster is virtually indistinguishable from the native cofactor. This procedure will be a powerful tool for developing new artificial H2-producing catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The H-cluster is assembled from a regular [4Fe-4S] cluster and a unique [2Fe] subcluster.
Figure 2: Various types of HYDA enzymes can be spontaneously activated by [2Fe]MIM and behave like the natural enzymes.
Figure 3: The chemically reconstituted H-cluster is virtually indistinguishable from the native form.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Frey, M. ChemBioChem 3, 153–160 (2002).

    Article  CAS  Google Scholar 

  2. Peters, J.W. & Broderick, J.B. Annu. Rev. Biochem. 81, 429–450 (2012).

    Article  CAS  Google Scholar 

  3. Peters, J.W., Lanzilotta, W.N., Lemon, B.J. & Seefeldt, L.C. Science 282, 1853–1858 (1998).

    Article  CAS  Google Scholar 

  4. Posewitz, M.C. et al. J. Biol. Chem. 279, 25711–25720 (2004).

    Article  CAS  Google Scholar 

  5. Mulder, D.W. et al. Nature 465, 248–251 (2010).

    Article  CAS  Google Scholar 

  6. Czech, I., Silakov, A., Lubitz, W. & Happe, T. FEBS Lett. 584, 638–642 (2010).

    Article  CAS  Google Scholar 

  7. Tard, C. & Pickett, C.J. Chem. Rev. 109, 2245–2274 (2009).

    Article  CAS  Google Scholar 

  8. Tard, C. et al. Nature 433, 610–613 (2005).

    Article  CAS  Google Scholar 

  9. Li, H. & Rauchfuss, T.B. J. Am. Chem. Soc. 124, 726–727 (2002).

    Article  CAS  Google Scholar 

  10. Knörzer, P. et al. J. Biol. Chem. 287, 1489–1499 (2012).

    Article  Google Scholar 

  11. Berggren, G. et al. Nature 499, 66–69 (2013).

    Article  CAS  Google Scholar 

  12. Meyer, J. Cell Mol. Life Sci. 64, 1063–1084 (2007).

    Article  CAS  Google Scholar 

  13. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C.E. & Fontecilla-Camps, J.C. Structure 7, 13–23 (1999).

    Article  CAS  Google Scholar 

  14. Atta, M. & Meyer, J. Biochim. Biophys. Acta 1476, 368–371 (2000).

    Article  CAS  Google Scholar 

  15. van Dijk, C. & Veeger, C. Eur. J. Biochem. 114, 209–219 (1981).

    Article  CAS  Google Scholar 

  16. Winkler, M., Kuhlgert, S., Hippler, M. & Happe, T. J. Biol. Chem. 284, 36620–36627 (2009).

    Article  CAS  Google Scholar 

  17. Noth, J., Krawietz, D., Hemschemeier, A. & Happe, T. J. Biol. Chem. 288, 4368–4377 (2013).

    Article  CAS  Google Scholar 

  18. Lubitz, W., Reijerse, E. & van Gastel, M. Chem. Rev. 107, 4331–4365 (2007).

    Article  CAS  Google Scholar 

  19. Kamp, C. et al. Biochim. Biophys. Acta 1777, 410–416 (2008).

    Article  CAS  Google Scholar 

  20. Silakov, A., Kamp, C., Reijerse, E., Happe, T. & Lubitz, W. Biochemistry 48, 7780–7786 (2009).

    Article  CAS  Google Scholar 

  21. Adamska, A. et al. Angew. Chem. Int. Ed. Engl. 51, 11458–11462 (2012).

    Article  CAS  Google Scholar 

  22. Shepard, E.M. et al. J. Am. Chem. Soc. 132, 9247–9249 (2010).

    Article  CAS  Google Scholar 

  23. Mulder, D.W. et al. Structure 19, 1038–1052 (2011).

    Article  CAS  Google Scholar 

  24. Razavet, M. et al. Chem. Commun. (Camb.) 7, 700–701 (2002).

    Article  Google Scholar 

  25. Winkler, M., Esselborn, J. & Happe, T. Biochim. Biophys. Acta 1827, 974–985 (2013).

    Article  CAS  Google Scholar 

  26. Akhtar, M.K. & Jones, P.R. Appl. Microbiol. Biotechnol. 78, 853–862 (2008).

    Article  CAS  Google Scholar 

  27. Kuchenreuther, J.M. et al. PLoS ONE 5, e15491 (2010).

    Article  Google Scholar 

  28. von Abendroth, G. et al. Int. J. Hydrogen Energy 33, 6076–6081 (2008).

    Article  CAS  Google Scholar 

  29. Gulis, G., Narasimhulu, K.V., Fox, L.N. & Redding, K.E. Photosynth. Res. 96, 51–60 (2008).

    Article  CAS  Google Scholar 

  30. Kuhlgert, S., Drepper, F., Fufezan, C., Sommer, F. & Hippler, M. Biochemistry 51, 7297–7303 (2012).

    Article  CAS  Google Scholar 

  31. Schmidt, M., Contakes, S.M. & Rauchfuss, T.B. J. Am. Chem. Soc. 121, 9736–9737 (1999).

    Article  CAS  Google Scholar 

  32. Razavet, M. et al. Dalton Trans. 2003, 586–595 (2003).

    Article  Google Scholar 

  33. Hemschemeier, A., Melis, A. & Happe, T. Photosynth. Res. 102, 523–540 (2009).

    Article  CAS  Google Scholar 

  34. Zijlstra, W.G. & Buursma, A. Comp. Biochem. Physiol. B 118, 743–749 (1997).

    Article  Google Scholar 

  35. Reijerse, E., Lendzian, F., Isaacson, R. & Lubitz, W. J. Magn. Reson. 214, 237–243 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung Bio-H2 project (to T.H. and W.L.), the Max Planck Society, the French National Research Agency (NiFe–Cat ANR–10–BLAN–711 and Labex Program ARCANE 11–LABX–003 to T.S.,V.A. and M.F.) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013/ERC grant agreement no. 306398 to V.A.). G.B. gratefully acknowledges the Bengt Lundqvist Minnesfond, The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (contract no. 213-2010-563) and the Swedish Royal Academy of Sciences. T.H. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft (HA 255/2-1) and the Volkswagen foundation (LigH2t). J.E. is financed by the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Contributions

C.L., J.E., J.N., A.H., M.F., W.L. and T.H. conceived and designed experiments. C.L., J.S., J.E., J.N. and A.A. performed the experiments. C.L., J.E., J.N., A.H., A.A. and T.H. analyzed the data. G.B., T.S., V.A. and M.F. provided the [2Fe]MIM and [2Fe]pdt complexes. A.A., E.R. and W.L. performed and analyzed the EPR and FTIR experiments. All of the authors discussed the results. A.H., J.E. and T.H. wrote the manuscript.

Corresponding author

Correspondence to Thomas Happe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–3. (PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esselborn, J., Lambertz, C., Adamska-Venkatesh, A. et al. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9, 607–609 (2013). https://doi.org/10.1038/nchembio.1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing