Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the functional yeast ABC transporter interactome

Subjects

Abstract

ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of ABC transporters in Saccharomyces cerevisiae and validation of MYTH-tagged baits.
Figure 2: Integrated ABC transporter interactome.
Figure 3: Investigation of interactions between full-size ABC transporters.
Figure 4: Investigating role of ABC transporters in zinc homeostasis.

Similar content being viewed by others

References

  1. Lewis, V.G., Ween, M.P. & McDevitt, C.A. The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma 249, 919–942 (2012).

    Article  CAS  Google Scholar 

  2. Verrier, P.J. et al. Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci. 13, 151–159 (2008).

    Article  CAS  Google Scholar 

  3. Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166 (2001).

    Article  CAS  Google Scholar 

  4. Dean, M. & Annilo, T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6, 123–142 (2005).

    Article  CAS  Google Scholar 

  5. Paumi, C.M., Chuk, M., Snider, J., Stagljar, I. & Michaelis, S. ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol. Mol. Biol. Rev. 73, 577–593 (2009).

    Article  CAS  Google Scholar 

  6. Hopfner, K.P. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255 (2003).

    Article  CAS  Google Scholar 

  7. Jones, P.M., O'Mara, M.L. & George, A.M. ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem. Sci. 34, 520–531 (2009).

    Article  CAS  Google Scholar 

  8. Jones, P.M. & George, A.M. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol. Life Sci. 61, 682–699 (2004).

    Article  CAS  Google Scholar 

  9. Gottesman, M.M. & Ambudkar, S.V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 33, 453–458 (2001).

    Article  CAS  Google Scholar 

  10. Cannon, R.D. et al. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321 (2009).

    Article  CAS  Google Scholar 

  11. Szakács, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C. & Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006).

    Article  Google Scholar 

  12. Stagljar, I., Korostensky, C., Johnsson, N. & Te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95, 5187–5192 (1998).

    Article  CAS  Google Scholar 

  13. Snider, J. et al. Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat. Protoc. 5, 1281–1293 (2010).

    Article  CAS  Google Scholar 

  14. Kovalchuk, A. & Driessen, A.J.M. Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11, 177 (2010).

    Article  Google Scholar 

  15. Mason, D.L., Mallampalli, M.P., Huyer, G. & Michaelis, S. A region within a lumenal loop of Saccharomyces cerevisiae Ycf1p directs proteolytic processing and substrate specificity. Eukaryot. Cell 2, 588–598 (2003).

    Article  CAS  Google Scholar 

  16. Paumi, C.M. et al. Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid analysis. Mol. Cell 26, 15–25 (2007).

    Article  CAS  Google Scholar 

  17. Kelm, K.B., Huyer, G., Huang, J.C. & Michaelis, S. The internalization of yeast Ste6p follows an ordered series of events involving phosphorylation, ubiquitination, recognition and endocytosis. Traffic 5, 165–180 (2004).

    Article  CAS  Google Scholar 

  18. Kölling, R. & Hollenberg, C.P. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13, 3261–3271 (1994).

    Article  Google Scholar 

  19. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  20. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  21. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    Article  CAS  Google Scholar 

  22. Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D704 (2011).

    Article  CAS  Google Scholar 

  23. Cherry, J.M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

    Article  CAS  Google Scholar 

  24. Shani, N. & Valle, D. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc. Natl. Acad. Sci. USA 93, 11901–11906 (1996).

    Article  CAS  Google Scholar 

  25. Kolaczkowska, A., Kolaczkowski, M., Goffeau, A. & Moye-Rowley, W.S. Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae. FEBS Lett. 582, 977–983 (2008).

    Article  CAS  Google Scholar 

  26. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  27. Rogers, B. et al. The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 3, 207–214 (2001).

    CAS  PubMed  Google Scholar 

  28. MacDiarmid, C.W., Milanick, M.A. & Eide, D.J. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem. 277, 39187–39194 (2002).

    Article  CAS  Google Scholar 

  29. Zhao, H. & Eide, D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 93, 2454–2458 (1996).

    Article  CAS  Google Scholar 

  30. Gitan, R.S., Shababi, M., Kramer, M. & Eide, D.J. A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J. Biol. Chem. 278, 39558–39564 (2003).

    Article  CAS  Google Scholar 

  31. MacDiarmid, C.W., Milanick, M.A. & Eide, D.J. Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J. Biol. Chem. 278, 15065–15072 (2003).

    Article  CAS  Google Scholar 

  32. Rockwell, N.C., Wolfger, H., Kuchler, K. & Thorner, J. ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J. Membr. Biol. 229, 27–52 (2009).

    Article  CAS  Google Scholar 

  33. Cabrito, T.R., Teixeira, M.C., Singh, A., Prasad, R. & Sá-Correia, I. The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochem. J. 440, 195–202 (2011).

    Article  CAS  Google Scholar 

  34. Pomorski, T. et al. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell 14, 1240–1254 (2003).

    Article  CAS  Google Scholar 

  35. Li, Y. & Prinz, W.A. ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J. Biol. Chem. 279, 45226–45234 (2004).

    Article  CAS  Google Scholar 

  36. Wilcox, L.J. et al. Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J. Biol. Chem. 277, 32466–32472 (2002).

    Article  CAS  Google Scholar 

  37. Eide, D.J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569 (2009).

    Article  CAS  Google Scholar 

  38. Burke, M.A., Mutharasan, R.K. & Ardehali, H. The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ. Res. 102, 164–176 (2008).

    Article  CAS  Google Scholar 

  39. Degryse, E., Dumas, B., Dietrich, M., Laruelle, L. & Achstetter, T. In vivo cloning by homologous recombination in yeast using a two-plasmid–based system. Yeast 11, 629–640 (1995).

    Article  CAS  Google Scholar 

  40. Sung, M.K. & Huh, W. Bimolecular fluorescence complementation analysis system for in vivo detection of protein–protein interaction in Saccharomyces cerevisiae. Yeast 24, 767–775 (2007).

    Article  CAS  Google Scholar 

  41. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  42. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  43. Lee, M.E. et al. The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 188, 859–870 (2011).

    Article  CAS  Google Scholar 

  44. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  45. Boyle, E.I. et al. GO:TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004).

    Article  CAS  Google Scholar 

  46. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  47. Ostlund, G. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010).

    Article  Google Scholar 

  48. Amberger, J., Bocchini, C.A., Scott, A.F. & Hamosh, A. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 37, D793–D796 (2009).

    Article  CAS  Google Scholar 

  49. Babu, M., Krogan, N.J., Awrey, D.E., Emili, A. & Greenblatt, J.F. Systematic characterization of the protein interaction network and protein complexes in Saccharomyces cerevisiae using tandem affinity purification and mass spectrometry. Methods Mol. Biol. 548, 187–207 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to our late friend and colleague Igor Shevelev. We thank B. Andrews, C. Nislow, F. Vizeacoumar, C. Kurat and S. Alfred (University of Toronto) for providing reagents, assistance and equipment; L. Miller, S. Pagant, K. Kuchler and C. Klein for experimental assistance; and W.K. Huh (Seoul National University) for providing BiFC plasmids. We also thank V. Kanelis, K. Sokolina and M. Ali for reviewing the manuscript. This work was supported by grants from the Canadian Institutes of Health Research, Canadian Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, Ontario Genomics Institute, Canadian Cystic Fibrosis Foundation, Canadian Cancer Society, University Health Network to I. Stagljar and National Institutes of Health (R01-GM76375 to H.-O.P. and R01-GM51508 to S.M.).

Author information

Authors and Affiliations

Authors

Contributions

I. Stagljar designed the project. J.S. was actively involved in all experiments, and wrote the bulk of the manuscript. I. Stagljar and S.M. provided project guidance and assisted in manuscript preparation. K.J. and Z.Z. performed bioinformatics analysis. H.-O.P. and M.E.L. performed BiFC experiments. A.R.Y. performed Westerns, phenotype assays and strain generation. A.H. carried out MYTH screening and zinc-related functional analysis. M.C., D.D., C.G., M.W., P.T. and V.W. carried out MYTH screening. S.L.S. and D.B. carried out MYTH screening of AUS1 under anaerobic conditions. K.D.D. carried out the PDR11 and AUS1 western blots. C.G., M.J., J.F.G and M.B. performed co-IP experiments. C.B. and B.-J.S.L. provided deletion strains. C.M.P. carried out zinc transport assays. H.-O.P. and C.M.P. critically reviewed the manuscript. I. Shevelev was involved in bait strain generation and initial project design.

Corresponding author

Correspondence to Igor Stagljar.

Ethics declarations

Competing interests

I. Stagljar is cofounder of Dualsystems Biotech, Switzerland.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–25 and Supplementary Tables 1–2 (PDF 5999 kb)

Supplementary Data Set 1

Comprehensive list of all hits identified in MYTH screening. (XLSX 16 kb)

Supplementary Data Set 2

Comprehensive list of all members of the integrated ABC transporter interactome annotated to identify those with human orthologs and human orthologs associated with (XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, J., Hanif, A., Lee, M. et al. Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9, 565–572 (2013). https://doi.org/10.1038/nchembio.1293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing