Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cell-cell communication signal integrates quorum sensing and stress response

An Erratum to this article was published on 20 May 2013

This article has been updated

Abstract

Pseudomonas aeruginosa uses a hierarchical quorum sensing (QS) network consisting of las, pqs and rhl regulatory elements to coordinate the expression of bacterial virulence genes. However, clinical isolates frequently contain loss-of-function mutations in the central las system. This motivated us to search for a mechanism that may functionally substitute las. Here we report identification of a new QS signal, IQS. Disruption of IQS biosynthesis paralyzes the pqs and rhl QS systems and attenuates bacterial virulence. Production of IQS is tightly controlled by las under normal culture conditions but is also activated by phosphate limitation, a common stressor that bacteria encounter during infections. Thus, these results have established an integrated QS system that connects the central las system and phosphate-stress response mechanism to the downstream pqs and rhl regulatory systems. Our discovery highlights the complexity of QS signaling systems and extends the gamut of QS and stress-response mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of ambB mutation on the production of virulence factors and QS signals in P. aeruginosa in LB medium.
Figure 2: Purification and structural analysis of IQS.
Figure 3: Production of QS signals C4HSL and PQS is dependent on IQS.
Figure 4: Coregulation of ambBCDE expression and IQS production by las and the phosphate-depletion stress response mechanism.
Figure 5: Impact of IQS on bacterial virulence and in vivo survival.

Similar content being viewed by others

Change history

  • 12 April 2012

    In the version of this article initially published online, the IQS structure used in Figure 2c and in the graphical abstract was incorrect. The error has been corrected for the PDF and HTML versions of this article.

References

  1. Fuqua, C. & Greenberg, E.P. Listening in on bacteria: acyl-homoserine lactone signaling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).

    Article  CAS  Google Scholar 

  2. Federle, M.J. & Bassler, B.L. Interspecies communication in bacteria. J. Clin. Invest. 112, 1291–1299 (2003).

    Article  CAS  Google Scholar 

  3. Winstanley, C. & Fothergill, L. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol. Lett. 290, 1–9 (2009).

    Article  CAS  Google Scholar 

  4. Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 30, 274–291 (2006).

    Article  CAS  Google Scholar 

  5. Williams, P. & Camara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191 (2009).

    Article  CAS  Google Scholar 

  6. Pesci, E.C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229–11234 (1999).

    Article  CAS  Google Scholar 

  7. de Kievit, T.R., Kakai, Y., Register, J.K., Pesci, E.C. & Iglewski, B.H. Role of the Pseudomonas aeruginosa las and rhl quorum sensing systems in rhlI regulation. FEMS Microbiol. Lett. 212, 101–106 (2002).

    Article  CAS  Google Scholar 

  8. Gilbert, K.B., Kim, T.H., Gupta, R., Greenberg, E.P. & Schuster, M. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73, 1072–1085 (2009).

    Article  CAS  Google Scholar 

  9. Jensen, V. et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J. Bacteriol. 188, 8601–8606 (2006).

    Article  CAS  Google Scholar 

  10. Dekimpe, V. & Déziel, E. Revisiting the quorum sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155, 712–723 (2009).

    Article  CAS  Google Scholar 

  11. Smith, E.E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103, 8487–8492 (2006).

    Article  CAS  Google Scholar 

  12. Tingpej, P. et al. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J. Clin. Microbiol. 45, 1697–1704 (2007).

    Article  CAS  Google Scholar 

  13. Rumbaugh, K.P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009).

    Article  CAS  Google Scholar 

  14. Wilder, C.N., Allada, G. & Schuster, M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect. Immun. 77, 5631–5639 (2009).

    Article  CAS  Google Scholar 

  15. Hoffman, L.R. et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8, 66–70 (2009).

    Article  CAS  Google Scholar 

  16. Karatuna, O. & Yagci, A. Analysis of quorum sensing–dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin. Microbiol. Infect. 16, 1770–1775 (2010).

    Article  CAS  Google Scholar 

  17. Gallagher, L.A. et al. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184, 6472–6480 (2002).

    Article  CAS  Google Scholar 

  18. Diggle, S.P. et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50, 29–43 (2003).

    Article  CAS  Google Scholar 

  19. Lee, X. et al. Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid. J. Bacteriol. 192, 4251–4255 (2010).

    Article  CAS  Google Scholar 

  20. Wanner, B.L. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51, 47–54 (1993).

    Article  CAS  Google Scholar 

  21. Shor, R. et al. Severe hypophosphatemia in sepsis as a mortality predictor. Ann. Clin. Lab. Sci. 36, 67–72 (2006).

    PubMed  Google Scholar 

  22. Long, J., Zaborina, O., Holbrook, C., Zaborin, A. & Alverdy, J. Depletion of intestinal phosphate after operative injury activates the virulence of P. aeruginosa causing lethal gut-derived sepsis. Surgery 144, 189–197 (2008).

    Article  Google Scholar 

  23. Zaborin, A. et al. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc. Natl. Acad. Sci. USA 106, 6327–6332 (2009).

    Article  CAS  Google Scholar 

  24. Jeddi, R. et al. Risk factors of septic shock in patients with hematologic malignancies and Pseudomonas infections. Hematology 16, 160–165 (2011).

    Article  CAS  Google Scholar 

  25. Dong, Y.H., Zhang, X.F., Xu, J.L., Tan, A.T. & Zhang, L.H. VqsM, a novel Ara-C–type global regulator of quorum sensing signaling and virulence in P. aeruginosa. Mol. Microbiol. 58, 552–564 (2005).

    Article  CAS  Google Scholar 

  26. Slater, H., Alvarez-Morales, A., Barber, C.E., Daniels, M.J. & Dow, J.M. A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 38, 986–1003 (2000).

    Article  CAS  Google Scholar 

  27. Dong, Y.H., Zhang, X.F., Xu, J.L., An, S.W. & Zhang, L.H. A novel two-component system BqsS-BqsR modulates quorum sensing–dependent biofilm decay in Pseudomonas aeruginosa. Commun. Integr. Biol. 1, 88–96 (2008).

    Article  CAS  Google Scholar 

  28. Ohman, D.E., Cryz, S.J. & Iglewski, B.H. Isolation and characterization of a Pseudomonas aeruginosa PAO mutant that produces altered elastase. J. Bacteriol. 142, 836–842 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Diggle, S.P. et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50, 29–43 (2003).

    Article  CAS  Google Scholar 

  30. McClean, K.H. et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711 (1997).

    Article  CAS  Google Scholar 

  31. Zhang, H.B., Wang, L.H. & Zhang, L.H. Detection and analysis of quorum-quenching enzymes against acyl homoserine lactone quorum-sensing signals. Curr. Protoc. Microbiol. 5, 1C.3.1 (2007).

    Article  Google Scholar 

  32. Nicas, T.I. & Iglewski, B.H. Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect. Immun. 45, 470–474 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, J.H. A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (CSHL Press, New York, 1992).

  34. Stiernagle, T. Maintenance of C. elegans in C. elegans: a Practical Approach (ed. Fay, D.) 1–11 (Oxford University Press, Oxford, 1999).

  35. Tan, M.W., Mahajan-Miklos, S. & Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96, 715–720 (1999).

    Article  CAS  Google Scholar 

  36. Houthoofd, K., Braeckman, B.P. & Vanfleteren, J.R. The hunt for the record life span in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 59, 408–410 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biomedical Research Council, Agency of Science, Technology and Research (A*Star), Singapore.

Author information

Authors and Affiliations

Authors

Contributions

J.L. performed all experiments except those described below. J. Wu performed IQS purification and structural analysis. Y.D. and P.W. assisted in reporter strain construction and data analysis. Jianhe Wang and Jing Wang assisted in virulence assays. C.W. conducted bioinformatics analysis. C.C. performed RT-PCR analysis. Y.D. generated mutant strains and conducted phenotype analysis. J.L., J. Wu and L.-H.Z. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Lian-Hui Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1516 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Wu, J., Deng, Y. et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9, 339–343 (2013). https://doi.org/10.1038/nchembio.1225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1225

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology