Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion

Abstract

Nature has exploited medium-sized 8- to 11-membered rings in a variety of natural products to address diverse and challenging biological targets. However, owing to the limitations of conventional cyclization-based approaches to medium-ring synthesis, these structures remain severely underrepresented in current probe and drug discovery efforts. To address this problem, we have established an alternative, biomimetic ring expansion approach to the diversity-oriented synthesis of medium-ring libraries. Oxidative dearomatization of bicyclic phenols affords polycyclic cyclohexadienones that undergo efficient ring expansion to form benzannulated medium-ring scaffolds found in natural products. The ring expansion reaction can be induced using three complementary reagents that avoid competing dienone-phenol rearrangements and is driven by rearomatization of a phenol ring adjacent to the scissile bond. Cheminformatic analysis of the resulting first-generation library confirms that these molecules occupy chemical space overlapping with medium-ring natural products and distinct from that of synthetic drugs and drug-like libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall strategy and precedents for the synthesis of benzannulated medium rings.
Figure 2: Proposed mechanisms for aromatization-driven ring expansion of 5 to benzannulated medium rings 6, 7, 8 and for formation of alternate tricycles 9 and 10.
Figure 3: Downstream modifications of ODRE-derived benzannulated medium-ring scaffolds.

Similar content being viewed by others

References

  1. Macías, F.A., Varela, R.M., Torres, A., Molinillo, J.M.G. & Fronczek, F.R. Allelopathic studies on cultivar species. 2. Novel sesquiterpene from bioactive fractions of cultivar sunflowers. Tetrahedr. Lett. 34, 1999–2002 (1993).

    Article  Google Scholar 

  2. Shimokawa, T., Kinjo, J., Yamahara, J., Yamasaki, M. & Nohara, T. Two novel aromatic compounds from Caesalpinia sappan. Chem. Pharm. Bull. (Tokyo) 33, 3545–3547 (1985).

    Article  CAS  Google Scholar 

  3. Singh, S.B. et al. Aspercyclide A–C, three novel fungal metabolites from Aspergillus sp. as inhibitors of high-affinity IgE receptor. Tetrahedr. Lett. 45, 7605–7608 (2004).

    Article  CAS  Google Scholar 

  4. Shirataki, Y., Tagaya, Y., Yokoe, I. & Komatsu, M. Studies on the constituents of Sophora species. Part 21. Sophoraside A, a new aromatic glycoside from the roots of Sophora japonica. Chem. Pharm. Bull. (Tokyo) 35, 1637–1640 (1987).

    Article  CAS  Google Scholar 

  5. Fu, X. et al. Flavanone and chalcone derivatives from Cryptocarya kurzii. J. Nat. Prod. 56, 1153–1163 (1993).

    Article  CAS  Google Scholar 

  6. Quideau, S. & Feldman, K.S. Ellagitannin chemistry. Chem. Rev. 96, 475–504 (1996).

    Article  CAS  Google Scholar 

  7. Kupchan, S.M. et al. Tumor inhibitors. LXXX. Steganacin and steganangin, novel antileukemic lignan lactones from Steganotaenia araliacea. J. Am. Chem. Soc. 95, 1335–1336 (1973).

    Article  CAS  Google Scholar 

  8. Abraham, D.J., Rosenstein, R.D., Lyon, R.L. & Fong, H.H.S. The structure elucidation of rhazinilam, a new class of alkaloids from the Apocynaceae, by X-ray analysis. Tetrahedr. Lett. 13, 909–912 (1972).

    Article  Google Scholar 

  9. Majhi, T.P., Achari, B. & Chattopadhyay, P. Advances in the synthesis and biological perspectives of benzannulated medium ring heterocycles. Heterocycles 71, 1011–1052 (2007).

    Article  CAS  Google Scholar 

  10. Khan, A.R. et al. Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes. Biochemistry 37, 16839–16845 (1998).

    Article  CAS  Google Scholar 

  11. Benfield, A.P. et al. Ligand preorganization may be accompanied by entropic penalties in protein-ligand interactions. Angew. Chem. Int. Ed. Engl. 45, 6830–6835 (2006).

    Article  CAS  Google Scholar 

  12. Udugamasooriya, D.G. & Spaller, M.R. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Biopolymers 89, 653–667 (2008).

    Article  CAS  Google Scholar 

  13. Veber, D.F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  Google Scholar 

  14. Rezai, T., Yu, B., Millhauser, G.L., Jacobson, M.P. & Lokey, R.S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128, 2510–2511 (2006).

    Article  CAS  Google Scholar 

  15. Kwon, Y.-U. & Kodadek, T. Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol. 14, 671–677 (2007).

    Article  CAS  Google Scholar 

  16. McGrath, N.A., Brichacek, M. & Njardarson, J.T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 87, 1348–1349 (2010).

    Article  CAS  Google Scholar 

  17. Illuminati, G. & Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res. 14, 95–102 (1981).

    Article  CAS  Google Scholar 

  18. Bauer, R.A., Wurst, J.M. & Tan, D.S. Expanding the range of ′druggable′ targets with natural product–based libraries: an academic perspective. Curr. Opin. Chem. Biol. 14, 308–314 (2010).

    Article  CAS  Google Scholar 

  19. Fürstner, A. & Mueller, C. Total synthesis of aspercyclide C. Chem. Commun. (Camb.) 5583–5585 (2005).10.1039/B512877C

  20. Pospíšil, J., Mueller, C. & Fürstner, A. Total synthesis of the aspercyclides. Chemistry 15, 5956–5968 (2009).

    Article  Google Scholar 

  21. Stefinovic, M. & Snieckus, V. Connecting directed ortho metalation and olefin metathesis strategies. Benzene-fused multiring-sized oxygen heterocycles. First syntheses of radulanin A and helianane. J. Org. Chem. 63, 2808–2809 (1998).

    Article  CAS  Google Scholar 

  22. Kishuku, H., Shindo, M. & Shishido, K. Enantioselective total synthesis of (–)-heliannuol A. Chem. Commun. (Camb.) 350–351 (2003).10.1039/B211227B

  23. Biswas, B., Sen, P.K. & Venkateswaran, R.V. Bargellini condensation of coumarins. Expeditious route to [o-(carboxyvinyl)phenoxy]isobutyric acids and application to the synthesis of sesquiterpenes helianane, heliannuol A and heliannuol C. Tetrahedron 63, 12026–12036 (2007).

    Article  CAS  Google Scholar 

  24. Macías, F.A., Chinchilla, D., Molinillo, J.M.G., Fronczek, F.R. & Shishido, K. A stereoselective route towards heliannuol A. Tetrahedron 64, 5502–5508 (2008).

    Article  Google Scholar 

  25. Sabui, S., Ghosh, S., Sarkar, D. & Venkateswaran, R.V. Expeditious synthesis of helianane and C-10 halogenated heliananes employing ring-closing metathesis. Tetrahedr. Lett. 50, 4683–4684 (2009).

    Article  CAS  Google Scholar 

  26. Deb, I., John, S. & Namboothiri, I.N.N. Synthesis of benzo-fused medium ring cyclic ethers via a Michael addition–ring closing metathesis strategy involving nitroaliphatic compounds. Tetrahedron 63, 11991–11997 (2007).

    Article  CAS  Google Scholar 

  27. Souers, A.J., Virgilio, A.A., Rosenquist, A., Fenuik, W. & Ellman, J.A. Identification of a potent heterocyclic ligand to somatostatin receptor subtype 5 by the synthesis and screening of β-turn mimetic libraries. J. Am. Chem. Soc. 121, 1817–1825 (1999).

    Article  CAS  Google Scholar 

  28. Spring, D.R., Krishnan, S., Blackwell, H.E. & Schreiber, S.L. Diversity-oriented synthesis of biaryl-containing medium rings using a one bead/one stock solution platform. J. Am. Chem. Soc. 124, 1354–1363 (2002).

    Article  CAS  Google Scholar 

  29. Khadem, S. et al. A solution- and solid-phase approach to tetrahydroquinoline-derived polycyclics having a 10-membered ring. J. Comb. Chem. 6, 724–734 (2004).

    Article  CAS  Google Scholar 

  30. Brown, N. et al. Design and synthesis of medium-ring lactam libraries inspired by octalactin A. A convergent-divergent approach. J. Comb. Chem. 10, 628–631 (2008).

    Article  CAS  Google Scholar 

  31. Marcaurelle, L.A. et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J. Am. Chem. Soc. 132, 16962–16976 (2010).

    Article  Google Scholar 

  32. Roxburgh, C.J. Syntheses of medium sized rings by ring expansion reactions. Tetrahedron 49, 10749–10784 (1993).

    Article  CAS  Google Scholar 

  33. Hesse, M. Ring Enlargement in Organic Chemistry (VCH, Weinheim, 1991).

  34. Barton, D.H.R. Some studies in the biogenesis of plant products. Pure Appl. Chem. 9, 35–48 (1964).

    Article  CAS  Google Scholar 

  35. Battersby, A.R., Bhatnagar, A.K., Hackett, P., Thornber, C.W. & Staunton, J. Synthesis of protostephanine by a route related to the biosynthetic pathway. Chem. Commun. 1214–1215 (1968).10.1039/C19680001214

  36. Bhakuni, D.S. & Jain, S. The biosynthesis of laurifinine. Tetrahedron 37, 3171–3174 (1981).

    Article  CAS  Google Scholar 

  37. Theuns, H.G. et al. Neodihydrothebaine and bractazonine, two dibenz[d,f]azonine alkaloids of Papaver bracteatum. Phytochemistry 23, 1157–1166 (1984).

    Article  CAS  Google Scholar 

  38. Marino, J.P. & Samanen, J.M. Biogenetic-type approach to homoerythrina alkaloids. J. Org. Chem. 41, 179–180 (1976).

    Article  CAS  Google Scholar 

  39. Kupchan, S.M., Kim, C.-K. & Lynn, J.T. Biomimetic synthesis of a key Erythrina alkaloid precursor. J. Chem. Soc. Chem. Commun. 86 (1976).10.1039/C3976000086A

  40. Kupchan, S.M., Dhingra, O.P. & Kim, C.-K. New biogenetic-type approach to Cephalotaxus alkaloids. J. Chem. Soc. Chem. Commun. 847–848 (1977).10.1039/C39770000847

  41. Kopp, F., Stratton, C.F., Akella, L.B. & Tan, D.S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat. Chem. Biol. 8, 358–365 (2012).

    Article  CAS  Google Scholar 

  42. Miller, B. Too many rearrangements of cyclohexadienones. Acc. Chem. Res. 8, 245–256 (1975).

    Article  CAS  Google Scholar 

  43. Marino, J.P. & Samanen, J.M. Chemistry of prohomoerythrinadienone I. Tetrahedr. Lett. 14, 4553–4556 (1973).

    Article  Google Scholar 

  44. Hosomi, A. Characteristics in the reactions of allylsilanes and their applications to versatile synthetic equivalents. Acc. Chem. Res. 21, 200–206 (1988).

    Article  CAS  Google Scholar 

  45. Becker, H.D., Bremholt, T. & Adler, E. Oxidative formation and photochemical isomerization of spiro-epoxy-2,4-cyclohexadienones. Tetrahedr. Lett. 13, 4205–4208 (1972).

    Article  Google Scholar 

  46. Morton, J.G.M., Kwon, L.D., Freeman, J.D. & Njardarson, J.T. An Adler-Becker oxidation approach to vinigrol. Tetrahedr. Lett. 50, 1684–1686 (2009).

    Article  CAS  Google Scholar 

  47. MacMillan, K.S. & Boger, D.L. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J. Med. Chem. 52, 5771–5780 (2009).

    Article  CAS  Google Scholar 

  48. Roush, W.R., Gillis, H.R. & Essenfeld, A.P. Hydrofluoric acid catalyzed intramolecular Diels-Alder reactions. J. Org. Chem. 49, 4674–4682 (1984).

    Article  CAS  Google Scholar 

  49. Harmata, M. & Rashatasakhon, P. Cycloaddition reactions of vinyl oxocarbenium ions. Tetrahedron 59, 2371–2395 (2003).

    Article  CAS  Google Scholar 

  50. Moura-Letts, G., DiBlasi, C.M., Bauer, R.A. & Tan, D.S. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library. Proc. Natl. Acad. Sci. USA 108, 6745–6750 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our colleague and mentor, David Y. Gin (1967–2011). We thank D. Boger for helpful discussions; C. Stratton for assistance with PCA calculations; J. Njar∂arson for providing drug structures; and G. Sukenick, H. Liu, H. Fang and S. Rusli for expert mass spectral analyses. Instant JChem was generously provided by ChemAxon. Financial support from the US National Institutes of Health (P41 GM076267 to D.S.T., P41 GM076267-03S1 to R.A.B. and T32 CA062948-Gudas to T.A.W.), W.H. Goodwin and A. Goodwin and the Commonwealth Foundation for Cancer Research, the Memorial Sloan-Kettering Cancer Center Experimental Therapeutics Center and the Tri-Institutional Stem Cell Initiative is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.A.B., T.A.W. and D.S.T. designed the experiments, analyzed the data and wrote the manuscript. R.A.B. and T.A.W. performed the synthesis and characterization. T.A.W. performed the molecular modeling studies. R.A.B. performed the PCA analysis.

Corresponding author

Correspondence to Derek S Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Notes 1–3 (PDF 90779 kb)

Supplementary Data Set 1

PCA analysis (XLS 7676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, R., Wenderski, T. & Tan, D. Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion. Nat Chem Biol 9, 21–29 (2013). https://doi.org/10.1038/nchembio.1130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing