Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The unanticipated complexity of the selectivity-filter glutamates of nicotinic receptors

Abstract

In ion channels, 'rings' of ionized side chains that decorate the walls of the permeation pathway often lower the energetic barrier to ion conduction. Using single-channel electrophysiological recordings, we studied the poorly understood ring of four glutamates (and one glutamine) that dominates this catalytic effect in the muscle nicotinic acetylcholine receptor ('the intermediate ring of charge'). We show that all four wild-type glutamate side chains are deprotonated in the range of 6.0–9.0 pH, that only two of them contribute to the size of the single-channel current, that these side chains must be able to adopt alternate conformations that either allow or prevent their negative charges from increasing the rate of cation conduction and that the location of these glutamate side chains squarely at one of the ends of the transmembrane pore is critical for their largely unshifted pKa values and for the unanticipated impact of their conformational flexibility on cation permeation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intermediate ring of glutamates.
Figure 2: Mutations reveal a complex conductance behavior.
Figure 3: The pH dependence of intermediate-ring mutants is weak.
Figure 4: The conformational dynamics are sensitive to the local electrostatics.
Figure 5: Moving the intermediate ring of glutamates into the pore.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).

    Article  CAS  Google Scholar 

  2. Galzi, J.L. et al. Mutations in the ion channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992).

    Article  CAS  Google Scholar 

  3. Bertrand, D., Galzi, J.L., Devillers-Thiéry, A., Bertrand, S. & Changeux, J.P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc. Natl. Acad. Sci. USA 90, 6971–6975 (1993).

    Article  CAS  Google Scholar 

  4. Corringer, P.-J. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22, 831–843 (1999).

    Article  CAS  Google Scholar 

  5. Prod'hom, B., Pietrobon, D. & Hess, P. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329, 243–246 (1987).

    Article  CAS  Google Scholar 

  6. Root, M.J. & MacKinnon, R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 265, 1852–1856 (1994).

    Article  CAS  Google Scholar 

  7. Chen, X.-H., Bezprozvanny, I. & Tsien, R.W. Molecular basis of proton block of L-type Ca2+ channels. J. Gen. Physiol. 108, 363–374 (1996).

    Article  CAS  Google Scholar 

  8. Hess, P., Lansman, J.B. & Tsien, R.W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88, 293–319 (1986).

    Article  CAS  Google Scholar 

  9. Elenes, S., Decker, M., Cymes, G.D. & Grosman, C. Decremental response to high-frequency trains of acetylcholine pulses but unaltered fractional Ca2+ currents in a panel of 'slow-channel syndrome' nicotinic-receptor mutants. J. Gen. Physiol. 133, 151–169 (2009).

    Article  CAS  Google Scholar 

  10. McDaniel, D.H. & Brown, H.C. Hydrogen bonding as a factor in the ionization of dicarboxylic acids. Science 118, 370–372 (1953).

    Article  CAS  Google Scholar 

  11. Rajasekaran, E., Jayaram, B. & Honig, B. Electrostatic interactions in the aliphatic dicarboxylic acids: a computational route to the determination of pKa shifts. J. Am. Chem. Soc. 116, 8238–8240 (1994).

    Article  CAS  Google Scholar 

  12. Flocco, M.M. & Mowbray, S.L. Strange bedfellows: interactions between acidic side chains in proteins. J. Mol. Biol. 254, 96–105 (1995).

    Article  CAS  Google Scholar 

  13. Wohlfahrt, G. Analysis of pH-dependent elements in proteins: geometry and properties of pairs of hydrogen-bonded carboxylic acid side-chains. Proteins 58, 396–406 (2005).

    Article  CAS  Google Scholar 

  14. Cymes, G.D., Ni, Y. & Grosman, C. Probing ion-channel pores one proton at a time. Nature 438, 975–980 (2005).

    Article  CAS  Google Scholar 

  15. Cymes, G.D. & Grosman, C. Estimating the pKa values of basic and acidic side chains in ion channels using electrophysiological recordings: A robust approach to an elusive problem. Proteins 79, 3485–3493 (2011).

    Article  CAS  Google Scholar 

  16. Bashford, D. & Gerwert, K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J. Mol. Biol. 224, 473–486 (1992).

    Article  CAS  Google Scholar 

  17. Lancaster, C.R., Michel, H., Honig, B. & Gunner, M.R. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys. J. 70, 2469–2492 (1996).

    Article  CAS  Google Scholar 

  18. Qin, J., Clore, M. & Gronenborn, A. Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NFκB. Biochemistry 35, 7–13 (1996).

    Article  CAS  Google Scholar 

  19. Lindman, S., Linse, S., Mulder, F.A. & André, I. Electrostatic contributions to residue-specific protonation equilibria and proton binding capacitance for a small protein. Biochemistry 45, 13993–14002 (2006).

    Article  CAS  Google Scholar 

  20. Søndergaard, C.R., McIntosh, L.P., Pollastri, G. & Nielsen, J.E. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites. J. Mol. Biol. 376, 269–287 (2008).

    Article  Google Scholar 

  21. Bombarda, E. & Ullmann, G.M. pH-dependent pKa values in proteins—a theoretical analysis of protonation energies with practical consequences for enzymatic reactions. J. Phys. Chem. B 114, 1994–2003 (2010).

    Article  CAS  Google Scholar 

  22. Bell, R.P. Kinetic isotope effects in proton-transfer reactions in The Proton in Chemistry 2nd edn. 250–296 (Cornell University Press, 1973).

  23. Dahlgren, G. Jr. & Long, F.A. Relative hydrogen bonding of deuterium. I. Ionization constants of maleic and fumaric acids and of their monoethyl esters in H2O and D2O. J. Am. Chem. Soc. 82, 1303–1308 (1960).

    Article  CAS  Google Scholar 

  24. Glasoe, P.K. & Eberson, L. Deuterium isotope effect in the ionization of substituted succinic acids in water and in deuterium oxide. J. Phys. Chem. 68, 1560–1562 (1964).

    Article  CAS  Google Scholar 

  25. Glasoe, P.K. & Hutchison, J.R. Deuterium isotope effect in the ionization of substituted malonic acids in water and in deuterium oxide. J. Phys. Chem. 68, 1562–1563 (1964).

    Article  CAS  Google Scholar 

  26. Salomaa, P., Schaleger, L.L. & Long, F.A. Solvent deuterium isotope effects on acid-base equilibria. J. Am. Chem. Soc. 86, 1–7 (1964).

    Article  CAS  Google Scholar 

  27. Hilf, R.J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  Google Scholar 

  28. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    Article  CAS  Google Scholar 

  29. Hilf, R.J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  30. Gutman, M., Tsfadia, Y., Masad, A. & Nachliel, E. Quantitation of physical-chemical properties of the aqueous phase inside the phoE ionic channel. Biochim. Biophys. Acta 1109, 141–148 (1992).

    Article  CAS  Google Scholar 

  31. Fayer, M.D. & Levinger, N.E. Analysis of water in confined geometries and at interfaces. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 3, 89–107 (2010).

    Article  CAS  Google Scholar 

  32. Elenes, S., Ni, Y., Cymes, G.D. & Grosman, C. Desensitization contributes to the synaptic response of gain-of-function mutants of the muscle nicotinic receptor. J. Gen. Physiol. 128, 615–627 (2006).

    Article  CAS  Google Scholar 

  33. Glasoe, P.K. & Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190 (1960).

    Article  CAS  Google Scholar 

  34. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).

    Article  CAS  Google Scholar 

  35. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

  36. Ohno, K. et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc. Natl. Acad. Sci. USA 92, 758–762 (1995).

    Article  CAS  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  38. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  39. Lovell, S.C., Word, J.M., Richardson, J.S. & Richardson, D.C. The penultimate rotamer library. Proteins 40, 389–408 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Sine (Mayo Clinic College of Medicine, Rochester, MN, USA) for wild-type muscle AChR cDNA, M. Slaughter (University at Buffalo School of Medicine, Buffalo, NY, USA) for wild-type α1 GlyR cDNA, and A. Holmstrom, M. Pasquini, J. Pizarek and M. Rigby for technical assistance. This work was supported by a grant from the US National Institutes of Health (R01-NS042169 to C.G.).

Author information

Authors and Affiliations

Authors

Contributions

G.D.C. and C.G. designed experiments, analyzed data and wrote the manuscript. G.D.C. performed experiments.

Corresponding author

Correspondence to Claudio Grosman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cymes, G., Grosman, C. The unanticipated complexity of the selectivity-filter glutamates of nicotinic receptors. Nat Chem Biol 8, 975–981 (2012). https://doi.org/10.1038/nchembio.1092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing