Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Lys34 of translation elongation factor EF-P is hydroxylated by YfcM

Abstract

Lys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA—a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the final maturation step of eukaryotic initiation factor 5A, the eukaryotic EF-P homolog.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lys34 of endogenous EF-P is modified by 144.09 Da.
Figure 2: Fully modified EF-P is dependent on the presence of YfcM.
Figure 3: YfcM hydroxylates the C4 or C5 position of Lys34 of EF-P.

Similar content being viewed by others

References

  1. Glick, B.R. & Ganoza, M.C. Proc. Natl. Acad. Sci. USA 72, 4257–4260 (1975).

    Article  CAS  Google Scholar 

  2. Glick, B.R., Chladek, S. & Ganoza, M.C. Eur. J. Biochem. 97, 23–28 (1979).

    Article  CAS  Google Scholar 

  3. Ganoza, M.C. & Aoki, H. Biol. Chem. 381, 553–559 (2000).

    Article  CAS  Google Scholar 

  4. Swaney, S. et al. J. Biomol. Screen. 11, 736–742 (2006).

    Article  CAS  Google Scholar 

  5. Bailly, M. & de Crecy-Lagard, V. Biol. Direct 5, 3 (2010).

    Article  Google Scholar 

  6. Kyrpides, N.C. & Woese, C.R. Proc. Natl. Acad. Sci. USA 95, 224–228 (1998).

    Article  CAS  Google Scholar 

  7. Park, M.H., Nishimura, K., Zanelli, C.F. & Valentini, S.R. Amino Acids 38, 491–500 (2010).

    Article  CAS  Google Scholar 

  8. Aoki, H. et al. FEBS J. 275, 671–681 (2008).

    Article  CAS  Google Scholar 

  9. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. Nat. Struct. Mol. Biol. 17, 1136–1143 (2010).

    Article  CAS  Google Scholar 

  10. Navarre, W.W. et al. Mol. Cell 39, 209–221 (2010).

    Article  CAS  Google Scholar 

  11. Roy, H. et al. Nat. Chem. Biol. 7, 667–669 (2011).

    Article  CAS  Google Scholar 

  12. Park, J.H. et al. J. Biol. Chem. 287, 2579–2590 (2012).

    Article  CAS  Google Scholar 

  13. Behshad, E. et al. Biochemistry 45, 12639–12646 (2006).

    Article  CAS  Google Scholar 

  14. Kaniga, K., Compton, M.S., Curtiss, R. III & Sundaram, P. Infect. Immun. 66, 5599–5606 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bearson, S.M., Bearson, B.L. & Rasmussen, M.A. Appl. Environ. Microbiol. 72, 2829–2836 (2006).

    Article  CAS  Google Scholar 

  16. Bearson, S.M., Bearson, B.L., Brunelle, B.W., Sharma, V.K. & Lee, I.S. Foodborne Pathog. Dis. 8, 725–732 (2011).

    Article  CAS  Google Scholar 

  17. de Crécy, E. et al. Appl. Microbiol. Biotechnol. 77, 489–496 (2007).

    Article  Google Scholar 

  18. Peng, W.T., Banta, L.M., Charles, T.C. & Nester, E.W. J. Bacteriol. 183, 36–45 (2001).

    Article  CAS  Google Scholar 

  19. Blaha, G., Stanley, R.E. & Steitz, T.A. Science 325, 966–970 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Morrice and J. Rappsilber for invaluable help and advice on amino acid analyses and L. Arike and T. Tammsalu for help with MS analyses. This research was supported by grants from the Deutsche Forschungsgemeinschaft WI3285/1-1, the Human Frontiers of Science Foundation (RGY88/2008), the European Molecular Biology Organization young investigator program (to D.N.W.) and the Estonian Science Foundation grant no. 9289 (to J.R.). L.P. and G.C.A. are supported by the European Social Fund program Mobilitas grants MJD144 and MJD99, respectively. MS analyses were, in part, supported by the European Regional Development Fund through the Center of Excellence in Chemical Biology (Institute of Technology, University of Tartu).

Author information

Authors and Affiliations

Authors

Contributions

L.P., A.L.S., J.R. and D.N.W. designed research; L.P. performed and analyzed MS data, A.L.S. and K.V. performed biochemistry; G.C.A. performed bioinformatics; and L.P., A.L.S., T.T., J.R. and D.N.W. analyzed data and wrote the paper.

Corresponding authors

Correspondence to Jaanus Remme or Daniel N Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peil, L., Starosta, A., Virumäe, K. et al. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat Chem Biol 8, 695–697 (2012). https://doi.org/10.1038/nchembio.1001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing