Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uranyl oxo activation and functionalization by metal cation coordination

Abstract

The oxo groups in the uranyl ion [UO2]2+—one of many oxo cations formed by metals from across the periodic table—are particularly inert, which explains the dominance of this ion in the laboratory and its persistence as an environmental contaminant. In contrast, transition metal oxo (M=O) compounds can be highly reactive and carry out difficult reactions such as the oxygenation of hydrocarbons. Here we show how the sequential addition of a lithium metal base to the uranyl ion constrained in a ‘Pacman’ environment results in lithium coordination to the U=O bonds and single-electron reduction. This reaction depends on the nature and stoichiometry of the lithium reagent and suggests that competing reduction and C–H bond activation reactions are occurring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic procedures to produce diamagnetic and paramagnetic uranyl Pacman complexes.
Figure 2: X-ray crystal structure determination of mono-, doubly and triply lithiated uranyl complexes.
Figure 3: Possible mechanisms that generate pentavalent uranyl [UO2]+ by reaction with a lithium reagent LiR.
Figure 4: Mechanistic insight into the formation of doubly lithiated uranyl complexes.
Figure 5: Computed energy profile for the reduction and oxo-group C–H activation by a model of a Pacman uranyl complex.

Similar content being viewed by others

References

  1. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A. 111, 4125–4143 (2007).

    Article  CAS  Google Scholar 

  2. Limberg, C. On the trail of CrO2Cl2 and its reactions with organic compounds. Chem. Eur. J. 6, 2083–2089 (2000).

    Article  CAS  Google Scholar 

  3. Que, Jr L. & Tolman, W. B. Biologically inspired oxidation catalysts. Nature 455, 333–340 (2008).

    Article  CAS  Google Scholar 

  4. Fortier, S. & Hayton, T. W. Oxo ligand functionalization in the uranyl ion (UO22+). Coord. Chem. Rev. 254, 197–214 (2010).

    Article  CAS  Google Scholar 

  5. Arnold, P. L., Love, J. B. & Patel, D. Pentavalent uranyl complexes. Coord. Chem. Rev. 253, 1973–1978 (2009).

    Article  CAS  Google Scholar 

  6. McCleskey, T. M., Foreman, T. M., Hallman, E. E., Burns, C. J. & Sauer, N. N. Approaching zero discharge in uranium reprocessing: photochemical reduction of uranyl. Environ. Sci. Tech. 35, 547–551 (2000).

    Article  Google Scholar 

  7. Renshaw, J. C. et al. Bioreduction of uranium: Environmental implications of a pentavalent intermediate. Environ. Sci. Tech. 39, 5657–5660 (2005).

    Article  CAS  Google Scholar 

  8. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysis. Nature 455, 341–349 (2008).

    Article  CAS  Google Scholar 

  9. Natrajan, L., Burdet, F., Pecaut, J. & Mazzanti, M. Synthesis and structure of a stable pentavalent-uranyl coordination polymer. J. Am. Chem. Soc. 128, 7152–7153 (2006).

    Article  CAS  Google Scholar 

  10. Mougel, V., Horeglad, P., Nocton, G., Pecaut, J. & Mazzanti, M. Stable pentavalent uranyl species and selective assembly of a polymetallic mixed-valent uranyl complex by cation-cation interactions. Angew. Chem. Int. Ed. 48, 8477–8480 (2009).

    Article  CAS  Google Scholar 

  11. Berthet, J. C., Siffredi, G., Thuery, P. & Ephritikhine, M. Easy access to stable pentavalent uranyl complexes. Chem. Commun. 3184–3186 (2006).

  12. Berthet, J. C., Siffredi, G., Thuery, P. & Ephritikhine, M. Synthesis and crystal structure of pentavalent uranyl complexes. The remarkable stability of UO2X (X=I, SO3CF3) in non-aqueous solutions. Dalton Trans. 3478–3494 (2009).

  13. Hayton, T. W. & Wu, G. Exploring the effects of reduction or Lewis acid coordination on the U=O bond of the uranyl moiety. Inorg. Chem. 48, 3065–3072 (2009).

    Article  CAS  Google Scholar 

  14. Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo-group silylation of the uranyl dication. Nature 451, 315–317 (2008).

    Article  CAS  Google Scholar 

  15. Yahia, A., Arnold, P. L., Love, J. B. & Maron, L. A DFT study of the single electron reduction and silylation of the U–O bond of the uranyl dication in a macrocyclic environment. Chem. Commun. 2402 (2009).

  16. Nocton, G. et al. Synthesis, structure, and bonding of stable complexes of pentavalent uranyl. J. Am. Chem. Soc. 132, 495–508 (2010).

    Article  CAS  Google Scholar 

  17. Gamp, E., Edelstein, N. M., Khan Malek, C., Hubert, S. & Genet, M. Anisotropic magnetic susceptibility of single crystal UCl4 . J. Chem. Phys. 79, 2023–2026 (1983).

    Article  CAS  Google Scholar 

  18. Lucas, R. L., Powell, D. R. & Borovik, A. S. Preparation of iron amido complexes via putative Fe(IV) imido intermediates. J. Am. Chem. Soc. 127, 11596–11597 (2005).

    Article  CAS  Google Scholar 

  19. Zdilla, M. J., Dexheimer, J. L. & Abu-Omar, M. M. Hydrogen atom transfer reactions of imido manganese(V) corrole: one reaction with two mechanistic pathways. J. Am. Chem. Soc. 129, 11505–11511 (2007).

    Article  CAS  Google Scholar 

  20. Bordwell, F. G., Zhang, X. & Cheng, J.-P. Comparisons of the acidities and homolytic bond dissociation energies of acidic N-H and C-H bonds in diphenylmethanes and carbazoles. J. Org. Chem. 56, 3216–3219 (1991).

    Article  CAS  Google Scholar 

  21. Bordwell, F. G., Harrelson, Jr J. A. & Satish, A. V. Oxidation potentials of carbanions and homolytic bond dissociation energies of their conjugate acids. J. Org. Chem. 54, 3101–3105 (1989).

    Article  CAS  Google Scholar 

  22. Renaud, P. & Fox, M. A. Electrochemical behaviour of lithium dialkylamides: the effect of aggregation. J. Am. Chem. Soc. 110, 5702–5705 (1988).

    Article  CAS  Google Scholar 

  23. McMillen, D. F. & Golden, D. M. Hydrocarbon bond dissociation energies. Ann. Rev. Phys. Chem. 33, 493–532 (1982).

    Article  CAS  Google Scholar 

  24. Kasai, P. H. & McLeod, D. Electron spin resonance study of heterocycles. II. Pyrrole, pyrazole, imidazole, and indole anion radicals. J. Am. Chem. Soc. 95, 27–31 (1973).

    Article  CAS  Google Scholar 

  25. Reid, S. D., Wilson, C., Blake, A. J. & Love, J. B. Tautomerisation and hydrogen-bonding interactions in four-coordinate metal halide and azide complexes of N-donor-extended dipyrromethanes. Dalton Trans. 39, 418–425 (2010).

    Article  CAS  Google Scholar 

  26. Büttner, T. et al. A stable aminyl radical metal complex. Science 307, 235–238 (2005).

    Article  Google Scholar 

  27. Jørgensen, C. K. & Reisfeld, R. Uranyl photophysics. Struct. Bond. 50, 121–171 (1982).

    Article  Google Scholar 

  28. McCleskey, T. M., Burns, C. J. & Tumas, W. Uranyl photochemistry with alkenes: Distinguishing between H-atom abstraction and electron transfer. Inorg. Chem. 38, 5924–5925 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC(UK), EaStCHEM, the University of Edinburgh and the CEA, CNRS and UPS for support. L.M. is grateful to Institut Universitaire de France. CalMip (CNRS, Toulouse, France), CINES (CNRS, Montpellier, France) and CCRT (CEA, France) are acknowledged for calculation facilities. The authors are grateful to D. Graham, I. Lamour, R. E. Mulvey and S. Robertson for help with obtaining the Raman spectroscopic measurements.

Author information

Authors and Affiliations

Authors

Contributions

A.-F.P. and E.H. synthesized and characterized the compounds, and solved the crystal structure data; A.Y. and L.M. carried out the DFT calculations; and S.J.P. solved and refined the disorder components for the crystal structure of 3py. P.L.A. and J.B.L. generated and managed the project, helped characterize the compounds, analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Polly L. Arnold or Jason B. Love.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5799 kb)

Supplementary information

1thf (GIF 1968 kb)

Supplementary information

3py (GIF 3405 kb)

Supplementary information

5thf (GIF 1976 kb)

Supplementary information

Crystallographic data for compound 2thf (CIF 50 kb)

Supplementary information

Crystallographic data for compound 3py (CIF 91 kb)

Supplementary information

Crystallographic data for compound 4py (CIF 68 kb)

Supplementary information

Crystallographic data for compound 5thf (CIF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, P., Pécharman, AF., Hollis, E. et al. Uranyl oxo activation and functionalization by metal cation coordination. Nature Chem 2, 1056–1061 (2010). https://doi.org/10.1038/nchem.904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing