Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams

Abstract

Enzymes are a continuing source of inspiration for the design of new chemical reactions that proceed with efficiency, high selectivity and minimal waste. In many biochemical processes, different catalytic species, such as Lewis acids and bases, are involved in precisely orchestrated interactions to activate reactants simultaneously or sequentially. This type of ‘cooperative catalysis’, in which two or more catalytic cycles operate concurrently to achieve one overall transformation, has great potential in enhancing known reactivity and driving the development of new chemical reactions with high value. In this disclosure, a cooperative N-heterocyclic carbene/Lewis acid catalytic system promotes the addition of homoenolate equivalents to hydrazones, generating highly substituted γ-lactams in moderate to good yields and with high levels of diastereo- and enantioselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opportunities with NHCs and metals.
Figure 2: Cooperative catalysis between a Lewis acid and an NHC.
Figure 3: N–N bond cleavage and further functionalization.

Similar content being viewed by others

References

  1. Kanai, M., Kato, N., Ichikawa, E. & Shibasaki, M. Power of cooperativity: Lewis acid–Lewis base bifunctional asymmetric catalysis. Synlett 1491–1508 (2005).

  2. Breslow, R. Bifunctional acid–base catalysis by imidazole groups in enzyme mimics. J. Mol. Catal. 91, 161–174 (1994).

    CAS  Google Scholar 

  3. Breslow, R. Bifunctional binding and catalysis. Supramol. Chem. 1, 111–118 (1993).

    CAS  Google Scholar 

  4. Lee, J. K., Kung, M. C. & Kung, H. H. Cooperative catalysis: a new development in heterogeneous catalysis. Top. Catal. 49, 136–144 (2008).

    CAS  Google Scholar 

  5. Miyabe, H. & Takemoto, Y. Discovery and application of asymmetric reaction by multi-functional thioureas. Bull. Chem. Soc. Jpn 81, 785–795 (2008).

    CAS  Google Scholar 

  6. Paull, D. H., Abraham, C. J., Scerba, M. T., Alden-Danforth, E. & Lectka, T. Bifunctional asymmetric catalysis: cooperative Lewis acid/base systems. Acc. Chem. Res. 41, 655–663 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Frank, R. A. W., Titman, C. M., Pratap, J. V., Luisi, B. F. & Perham, R. N. A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306, 872–876 (2004).

    CAS  PubMed  Google Scholar 

  8. Jordan, F. & Patel, M. S. Thiamine: Catalytic Mechanisms in Normal and Disease States (Marcel Dekker, 2004).

    Google Scholar 

  9. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    CAS  Google Scholar 

  10. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    CAS  PubMed  Google Scholar 

  11. Phillips, E. M., Chan, A. & Scheidt, K. A. Discovering new reactions with N-heterocyclic carbenes. Aldrichimica Acta 42, 55–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheehan, J. C. & Hara, T. Asymmetric thiazolium salt catalysis of the benzoin condensation. J. Org. Chem. 39, 1196–1199 (1974).

    CAS  Google Scholar 

  13. Stetter, H., Raemsch, R. Y. & Kuhlmann, H. The preparative use of thiazolium salt-catalyzed acyloin and benzoin formation, i. Preparation of simple acyloins and benzoins. Synthesis 733–735 (1976).

  14. Breslow, R. & Schmuck, C. The mechanism of thiazolium catalysis. Tetrahedron Lett. 37, 8241–8242 (1996).

    CAS  Google Scholar 

  15. Enders, D. & Kallfass, U. An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angew. Chem. Int. Ed. 41, 1743–1745 (2002).

    CAS  Google Scholar 

  16. Kerr, M. S., de Alaniz, J. R. & Rovis, T. A highly enantioselective catalytic intramolecular Stetter reaction. J. Am. Chem. Soc. 124, 10298–10299 (2002).

    CAS  PubMed  Google Scholar 

  17. Mattson, A. E., Bharadwaj, A. R. & Scheidt, K. A. The thiazolium-catalyzed sila-Stetter reaction: conjugate addition of acylsilanes to unsaturated esters and ketones. J. Am. Chem. Soc. 126, 2314–2315 (2004).

    CAS  PubMed  Google Scholar 

  18. Burstein, C. & Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).

    CAS  Google Scholar 

  19. Chan, A. & Scheidt, K. A. Conversion of α,β-unsaturated aldehydes into saturated esters: an umpolung reaction catalyzed by nucleophilic carbenes. Org. Lett. 7, 905–908 (2005).

    CAS  PubMed  Google Scholar 

  20. Sohn, S. S., Rosen, E. L. & Bode, J. W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).

    CAS  PubMed  Google Scholar 

  21. Nair, V., Vellalath, S., Poonoth, M. & Suresh, E. N-heterocyclic carbene-catalyzed reaction of chalcones and enals via homoenolate: an efficient synthesis of 1,3,4-trisubstituted cyclopentenes. J. Am. Chem. Soc. 128, 8736–8737 (2006).

    CAS  PubMed  Google Scholar 

  22. Chan, A. & Scheidt, K. A. Highly stereoselective formal [3 + 3] cycloaddition of enals and azomethine imines catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc. 129, 5334–5335 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips, E. M., Reynolds, T. E. & Scheidt, K. A. Highly diastereo- and enantioselective additions of homoenolates to nitrones catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc. 130, 2416–2417 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Phillips, E. M., Wadamoto, M., Chan, A. & Scheidt, K. A. A highly enantioselective intramolecular Michael reaction catalyzed by N-heterocyclic carbenes. Angew. Chem. Int. Ed. 46, 3107–3110 (2007).

    CAS  Google Scholar 

  25. Wadamoto, M., Phillips, E. M., Reynolds, T. E. & Scheidt, K. A. Enantioselective synthesis of α,α-disubstituted cyclopentenes by an N-heterocyclic carbene-catalyzed desymmetrization of 1,3-diketones. J. Am. Chem. Soc. 129, 10098–10099 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds, T. E., Stern, C. A. & Scheidt, K. A. N-heterocyclic carbene-initiated alpha-acylvinyl anion reactivity: Additions of alpha-hydroxypropargylsilanes to aldehydes. Org. Lett. 9, 2581–2584 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Burgess, K. & Perry, M. C. Chiral N-heterocyclic carbene–transition metal complexes in asymmetric catalysis. Tetrahedron: Asymmetry 14, 951–961 (2003).

    Google Scholar 

  28. Brown, M. K., May, T. L., Baxter, C. A. & Hoveyda, A. H. All-carbon quaternary stereogenic centers by enantioselective Cu-catalyzed conjugate additions promoted by a chiral N-heterocyclic carbene. Angew. Chem. Int. Ed. 46, 1097–1100 (2007).

    CAS  Google Scholar 

  29. Lee, Y., Li, B. & Hoveyda, A. H. Stereogenic-at-metal Zn- and Al-based N-heterocyclic carbene (NHC) complexes as bifunctional catalysts in Cu-free enantioselective allylic alkylations. J. Am. Chem. Soc. 131, 11625–11633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nolan, S. P. N-Heterocyclic Carbenes in Synthesis (Wiley-VCH, 2006).

    Google Scholar 

  31. Diez-Gonzalez, S., Marion, N. & Nolan, S. P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612–3676 (2009).

    CAS  PubMed  Google Scholar 

  32. Lin, J. C. Y. et al. Coinage metal-N-heterocyclic carbene complexes. Chem. Rev. 109, 3561–3598 (2009).

    CAS  PubMed  Google Scholar 

  33. Glorius, F. E. N-Heterocyclic Carbenes in Transition Metal Catalysis (Springer-Verlag, 2007).

    Google Scholar 

  34. Lebeuf, R., Hirano, K. & Glorius, F. Palladium-catalyzed C-allylation of benzoins and an NHC-catalyzed three component coupling derived thereof: compatibility of NHC- and Pd-catalysts. Org. Lett. 10, 4243–4246 (2008).

    CAS  PubMed  Google Scholar 

  35. Tran, J. A. et al. Design and synthesis of 3-arylpyrrolidine-2-carboxamide derivatives as melanocortin-4 receptor ligands. Bioorg. Med. Chem. Lett. 18, 1931–1938 (2008).

    CAS  PubMed  Google Scholar 

  36. Silverman, R. B. & Nanavati, S. M. Selective-inhibition of gamma-aminobutyric-acid aminotransferase by (3R,4R),(3S,4S)-4-amino-5-fluoro-3-phenylpentanoic and (3R,4S),(3S,4R)-4-amino-5-fluoro-3-phenylpentanoic acids. J. Med. Chem. 33, 931–936 (1990).

    CAS  PubMed  Google Scholar 

  37. Hartwig, W. & Born, L. Diastereoselective and enantioselective total synthesis of the hepatoprotective agent clausenamide. J. Org. Chem. 52, 4352–4358 (1987).

    CAS  Google Scholar 

  38. He, M. & Bode, J. W. Catalytic synthesis of gamma-lactams via direct annulations of enals and N-sulfonylimines. Org. Lett. 7, 3131–3134 (2005).

    CAS  PubMed  Google Scholar 

  39. Sugiura, M. & Kobayashi, S. N-acylhydrazones as versatile electrophiles for the synthesis of nitrogen-containing compounds. Angew. Chem. Int. Ed. 44, 5176–5186 (2005).

    CAS  Google Scholar 

  40. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pk(a) units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    CAS  PubMed  Google Scholar 

  41. Beach, R. G. & Ashby, E. C. Synthesis and characterization of dialkyl(aryl)aminomagnesium hydrides and alkoxy(aryloxy)magnesium hydrides. Inorg. Chem. 10, 906–910 (1971).

    Google Scholar 

  42. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).

    CAS  Google Scholar 

  43. Tang, K. & Zhang, J. T. The effects of (–)clausenamide on functional recovery in transient focal cerebral ischemia. Neurol. Res. 24, 473–478 (2002).

    CAS  PubMed  Google Scholar 

  44. Haldar, P. & Ray, J. K. Chemoselective reduction of a lactam carbonyl group in the presence of a gem-dicarboxylate by sodium borohydride and iodine: a facile entry to N-aryl trisubstituted pyrroles. Tetrahedron Lett. 44, 8229–8231 (2003).

    CAS  Google Scholar 

  45. Arnold, U. et al. Protein prosthesis: a nonnatural residue accelerates folding and increases stability. J. Am. Chem. Soc. 125, 7500–7501 (2003).

    CAS  PubMed  Google Scholar 

  46. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    CAS  PubMed  Google Scholar 

  47. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was generously provided by National Institute of General Medical Sciences (RO1 GM73072), GlaxoSmithKline, AstraZeneca and the Alfred P. Sloan Foundation. B.C.D. thanks the Fonds Quebecois de la Recherche sur la Nature et les Technologies for a postdoctoral fellowship. Funding for the Northwestern University Integrated Molecular Structure Education and Research Center (IMSERC) has been furnished in part by the National Science Foundation (CHE-9871268). T. Reynolds and J. Roberts provided X-ray crystallography support.

Author information

Authors and Affiliations

Authors

Contributions

K.A.S. conceived the idea and wrote the manuscript. D.E.A.R., B.C.-D. and D.H. performed the experiments. All the authors analysed the data. K.A.S., D.E.A.R. and B.C.-D contributed to discussions and edited the manuscript.

Corresponding author

Correspondence to Karl A. Scheidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1940 kb)

Supplementary information

Crystallographic data for compound 3fa (CIF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raup, D., Cardinal-David, B., Holte, D. et al. Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams. Nature Chem 2, 766–771 (2010). https://doi.org/10.1038/nchem.727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing