Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Random two-dimensional string networks based on divergent coordination assembly

Abstract

The bulk properties of glasses and amorphous materials have been studied widely, but the determination of their structural details at the molecular level is hindered by the lack of long-range order. Recently, two-dimensional, supramolecular random networks were assembled on surfaces, and the identification of elementary structural motifs and defects has provided insights into the intriguing nature of disordered materials. So far, however, such networks have been obtained with homomolecular hydrogen-bonded systems of limited stability. Here we explore robust, disordered coordination networks that incorporate transition-metal centres. Cobalt atoms were co-deposited on metal surfaces with a ditopic linker that is nonlinear, prochiral (deconvoluted in three stereoisomers on two-dimensional confinement) and bears terminal carbonitrile groups. In situ scanning tunnelling microscopy revealed the formation of a set of coordination nodes of similar energy that drives a divergent assembly scenario. The expressed string formation and bifurcation motifs result in a random reticulation of the entire surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deconvolution of the prochiral molecular linker [1,1′;4′,1′′]-terphenyl-3,3′′-dicarbonitrile on 2D confinement.
Figure 2: STM images of random coordination string networks.
Figure 3: Molecular-resolution STM images of a disordered coordination network on Ag(111).
Figure 4: Random coordination string networks on Ag(111).
Figure 5: Molecular manipulation experiments.

Similar content being viewed by others

References

  1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  2. Debendetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  Google Scholar 

  3. Zallen, R. The Physics of Amorphous Solids (Wiley-VCH, 2004).

    Google Scholar 

  4. Chandler, D. Liquids and structural glasses—special feature. Proc. Natl Acad. Sci. USA 106, 15111–15112 (2009).

    Article  CAS  Google Scholar 

  5. Otero, R. et al. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319, 312–315 (2008).

    Article  CAS  Google Scholar 

  6. Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077–1081 (2008).

    Article  CAS  Google Scholar 

  7. Zhou, H. et al. Frustrated 2D molecular crystallization. J. Am. Chem. Soc. 129, 13774 (2007).

    Article  CAS  Google Scholar 

  8. Garrahan, J. P., Stannard, A., Blunt, M. O. & Beton, P. H. Molecular random tilings as glasses. Proc. Natl Acad. Sci. USA 106, 15209–15213 (2009).

    Article  CAS  Google Scholar 

  9. Lin, N., Stepanow, S., Ruben, M. & Barth, J. V. Surface-confined supramolecular coordination chemistry. Top. Curr. Chem. 287, 1–44 (2009).

    CAS  Google Scholar 

  10. Barth, J. V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 603, 1533–1541 (2009).

    Article  CAS  Google Scholar 

  11. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).

    Article  CAS  Google Scholar 

  12. Stepanow, S. et al. Steering molecular organization and host–guest interactions using tailor-made two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  13. Schlickum, U. et al. Metal–organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 7, 3813–3818 (2007).

    Article  CAS  Google Scholar 

  14. Kühne, D. et al. High-quality 2D metal–organic coordination network providing giant cavities within mesoscale domains. J. Am. Chem. Soc. 131, 3881–3883 (2009).

    Article  Google Scholar 

  15. Semenov, A. et al. Controlled arrangement of supramolecular coordination arrays on surfaces. Angew. Chem. Int. Ed. 38, 2547–2550 (1999).

    Article  CAS  Google Scholar 

  16. Dmitriev, A., Spillmann, H., Lin, N., Barth, J. V. & Kern, K. Modular assembly of two-dimensional metal–organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 41, 2670–2673 (2003).

    Article  Google Scholar 

  17. Classen, T. et al. Templated growth of metal–organic coordination chains at surfaces. Angew. Chem. Int. Ed. 44, 6142–6145 (2005).

    Article  CAS  Google Scholar 

  18. Stepanow, S., Lin, N., Barth, J. V. & Kern, K. Surface-templated assembly of 2D metal–organic coordination networks. J. Phys. Chem. B 110, 23472–23477 (2006).

    Article  CAS  Google Scholar 

  19. Surin, M., Samori, P., Jouaiti, A., Kyritsakas, N. & Housseini, M. W. Molecular tectonics on surfaces: bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angew. Chem. Int. Ed. 46, 245–249 (2007).

    Article  CAS  Google Scholar 

  20. Tait, S. L. et al. One-dimensional self-assembled molecular chains on Cu(100): interplay between surface-assisted coordination chemistry and substrate commensurability. J. Phys. Chem. C 111, 10982–10987 (2007).

    Article  CAS  Google Scholar 

  21. Klappenberger, F. et al. Temperature dependence of conformation, chemical state, and metal-directed assembly of tetrapyridyl-porphyrin on Cu(111) surface. J. Chem. Phys. 129, 214702 (2008).

    Article  CAS  Google Scholar 

  22. Pawin, G. et al. A surface coordination network based on substrate-derived metal adatoms with local charge excess. Angew. Chem. Int. Ed. 47, 8442–8445 (2008).

    Article  CAS  Google Scholar 

  23. Welte, L. et al. Organization of coordination polymers on surfaces by direct sublimation. Adv. Mater. 21, 2025–2028 (2009).

    Article  CAS  Google Scholar 

  24. Spillmann, H. et al. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 125, 10725–10728 (2003).

    Article  CAS  Google Scholar 

  25. Clair, S., Pons, S., Brune, H., Kern, K. & Barth, J. V. Mesoscopic metallosupramolecular texturing through hierarchic assembly. Angew. Chem. Int. Ed. 44, 7294–7297 (2005).

    Article  CAS  Google Scholar 

  26. Langner, A. et al. Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces. Proc. Natl Acad. Sci. USA 104, 17927–17930 (2007).

    Article  CAS  Google Scholar 

  27. Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket'. Science 312, 1782–1785 (2006).

    Article  CAS  Google Scholar 

  28. Cotton, F. A., Lin, C. & Murillo, C. A. The use of dimetal building blocks in convergent synthesis of large arrays. Proc. Natl Acad. Sci. USA 99, 4810–4813 (2002).

    Article  CAS  Google Scholar 

  29. Schlickum, U. et al. Chiral kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 130, 11778–11782 (2008).

    Article  CAS  Google Scholar 

  30. Johansson, M. P. & Olsen, J. Torsional barriers and equilibrium angle of biphenyl: reconciling theory with experiment. J. Chem. Theory Comput. 4, 1460–1471 (2008).

    Article  CAS  Google Scholar 

  31. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    Article  CAS  Google Scholar 

  32. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    Article  CAS  Google Scholar 

  33. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    Article  CAS  Google Scholar 

  34. Clair, S. et al. Monitoring two-dimensional coordination reactions: directed assembly of Co-terephthalate nanosystems on Au(111). J. Phys. Chem. B 110, 5627–5632 (2006).

    Article  CAS  Google Scholar 

  35. Messina, P. et al. Direct observation of chiral metal–organic complexes assembled on a Cu(100) surface. J. Am. Chem. Soc. 124, 14000–14001 (2002).

    Article  CAS  Google Scholar 

  36. Barlow, S. M. & Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 50, 201–341 (2003).

    Article  CAS  Google Scholar 

  37. Lehn, J.-M. Programmed chemical systems: multiple subprograms and multiple processing/expression of molecular information. Chem. Eur. J. 6, 2097–2102 (2000).

    Article  CAS  Google Scholar 

  38. Lin, N., Stepanow, S., Vidal, F., Barth, J. V. & Kern, K. Manipulating surface-supported diiron units via ligand control. Chem. Commun. 1681–1683 (2005).

  39. Stepanow, S., Lin, N. & Barth, J. V. Modular assembly of low-dimensional coordination architectures on metal surfaces. J. Phys. Cond. Matt. 20, 184002 (2008).

    Article  Google Scholar 

  40. Stepanow, S. et al. Surface-assisted assembly of 2D metal–organic networks that exhibit unusual threefold coordination symmetry. Angew. Chem. Int. Ed. 46, 710–713 (2007).

    Article  CAS  Google Scholar 

  41. Clair, S. et al. STM study of terephthalic acid self-assembly on Au(111): hydrogen-bonded sheets on an inhomogenous substrate. J. Phys. Chem. B 108, 19392–19397 (2004).

    Article  Google Scholar 

  42. Przychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord. Chem. Rev. 250, 2234–2260 (2006).

    Article  CAS  Google Scholar 

  43. Gambardella, P. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater. 8, 189–193 (2009).

    Article  CAS  Google Scholar 

  44. Pivetta, M., Blüm, M.-C., Patthey, F. & Schneider, W.-D. Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surface. Angew. Chem. Int. Ed. 47, 1076 (2008).

    Article  CAS  Google Scholar 

  45. Klappenberger, F. et al. Does the surface matter? Hydrogen-bonded chain formation of an oxalic amide derivative in a two- and three-dimensional environment. ChemPhysChem 9, 2522–2530 (2008).

    Article  CAS  Google Scholar 

  46. Bauert, T. et al. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 131, 3460–3462 (2009).

    Article  CAS  Google Scholar 

  47. von der Saal, W. et al. Syntheses and selective inhibitory activities of terphenyl-bisamidines for serine proteases. Arch. Pharm. 329, 73–82 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Jean-Marie Lehn on the occasion of his 70th birthday. Work supported by the European Science Foundation Collaborative Research Programme FunSMARTs, the DFG Cluster of Excellence Munich Center for Advanced Photonics (MAP), DFG Centre of Functional Nanostructures Karlsruhe (project CFN E3.5), the Canadian Natural Sciences and Engineering Research Council and the Canada Foundation for Innovation. We thank U. Schlickum, I. Silanes and A. Arnau for helpful discussions and providing additional information.

Author information

Authors and Affiliations

Authors

Contributions

M.M., J.R., A.W.-B., K.S. and W.A. performed the experiments, and analysed and interpreted the data. S.K. and G.Z. developed the synthesis of the linkers used. J.V.B. and M.R. conceived the studies and co-wrote the paper with W.A., M.M. and J.R.

Corresponding authors

Correspondence to Mario Ruben or Johannes V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschall, M., Reichert, J., Weber-Bargioni, A. et al. Random two-dimensional string networks based on divergent coordination assembly. Nature Chem 2, 131–137 (2010). https://doi.org/10.1038/nchem.503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing