Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor


Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular ( Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl–Ag–alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Supramolecular ( AT formation through interfacial chemical conversion of primary tectons by a convergent reaction scheme.
Figure 2: STM overview of two different AT phases and irregular molecular arrangements on Ag(111).
Figure 3: AT ( geometry and molecular-level expression.
Figure 4: XPS and NEXAFS characterization of chemical species occurring during the convergent reaction pathway.
Figure 5: Real-space characterization of temperature-dependent molecular species and cluster arrangements.
Figure 6: Proposed convergent multi-step reaction pathway.


  1. 1

    Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

    Google Scholar 

  2. 2

    Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    CAS  PubMed  Google Scholar 

  3. 3

    Kepler, J. Harmonices Mundi (Johannes Planck, 1619).

    Google Scholar 

  4. 4

    Millan, J. A., Ortiz, D., van Anders, G. & Glotzer, S. C. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons. ACS Nano 8, 2918–2928 (2014).

    CAS  PubMed  Google Scholar 

  5. 5

    Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    CAS  Google Scholar 

  6. 6

    Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    CAS  Google Scholar 

  7. 7

    Ueda, K., Dotera, T. & Gemma, T. Photonic band structure calculations of two-dimensional Archimedean tiling patterns. Phys. Rev. B 75, 195122 (2007).

    Google Scholar 

  8. 8

    Basnarkov, L. & Urumov, V. Diffusion on Archimedean lattices. Phys. Rev. E 73, 046116 (2006).

    Google Scholar 

  9. 9

    Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    CAS  Google Scholar 

  10. 10

    Tsai, A. P. & Yoshimura, M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A 214, 237–241 (2001).

    CAS  Google Scholar 

  11. 11

    Zhang, F., Liu, Y. & Yan, H. Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 135, 7458–7461 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Zhang, F. et al. Self-assembly of complex DNA tessellations by using low-symmetry multi-arm DNA tiles. Angew. Chem. Int. Ed. 128, 9006–9009 (2016).

    Google Scholar 

  13. 13

    Tschierske, C. Liquid crystal engineering—new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007).

    CAS  PubMed  Google Scholar 

  14. 14

    Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    CAS  PubMed  Google Scholar 

  15. 15

    Asari, T., Arai, S., Takano, A. & Matsushita, Y. Archimedean tiling structures from ABA/CD block copolymer blends having intermolecular association with hydrogen bonding. Macromolecules 39, 2232–2237 (2006).

    CAS  Google Scholar 

  16. 16

    Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    PubMed  Google Scholar 

  17. 17

    Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    CAS  PubMed  Google Scholar 

  18. 18

    Elemans, J. A. A. W., Lei, S. B. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    CAS  Google Scholar 

  19. 19

    Bartels, L. Tailoring molecular layers at metal surfaces. Nat. Chem. 2, 87–95 (2010).

    CAS  PubMed  Google Scholar 

  20. 20

    Dong, L., Gao, Z. A. & Lin, N. Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 91, 101–135 (2016).

    CAS  Google Scholar 

  21. 21

    Klappenberger, F. Two-dimensional functional molecular nanoarchitectures—complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Prog. Surf. Sci. 89, 1–55 (2014).

    CAS  Google Scholar 

  22. 22

    Tahara, K. et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).

    CAS  PubMed  Google Scholar 

  23. 23

    Schlickum, U. et al. Chiral Kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 130, 11778–11782 (2008).

    CAS  PubMed  Google Scholar 

  24. 24

    Ecija, D. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl Acad. Sci. USA 110, 6678–6681 (2013).

    CAS  PubMed  Google Scholar 

  25. 25

    Shi, Z. L. & Lin, N. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131, 5376–5377 (2009).

    CAS  PubMed  Google Scholar 

  26. 26

    Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

    CAS  PubMed  Google Scholar 

  27. 27

    Urgel, J. I. et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 8, 657–662 (2016).

    CAS  PubMed  Google Scholar 

  28. 28

    Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    PubMed  Google Scholar 

  29. 29

    Otero, R. et al. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319, 312–315 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Marschall, M. et al. Random two-dimensional string networks based on divergent coordination assembly. Nat. Chem. 2, 131–137 (2010).

    CAS  PubMed  Google Scholar 

  31. 31

    Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).

    CAS  PubMed  Google Scholar 

  32. 32

    Shang, J. et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389–393 (2015).

    CAS  PubMed  Google Scholar 

  33. 33

    Pivetta, M., Blüm, M.-C., Patthey, F. & Schneider, W.-D. Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surface. Angew. Chem. Int. Ed. 47, 1076–1079 (2008).

    CAS  Google Scholar 

  34. 34

    Guillermet, O. et al. Self-assembly of fivefold-symmetric molecules on a threefold-symmetric surface. Angew. Chem. Int. Ed. 48, 1970–1973 (2009).

    CAS  Google Scholar 

  35. 35

    Bauert, T. et al. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 131, 3460–3461 (2009).

    CAS  PubMed  Google Scholar 

  36. 36

    Lehn, J.-M. Perspectives in chemistry—steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

    CAS  Google Scholar 

  37. 37

    Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).

    CAS  Google Scholar 

  38. 38

    Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. The nature of halogen···halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 48, 3838–3841 (2009).

    CAS  Google Scholar 

  39. 39

    Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Brammer, L., Zhao, D., Ladipo, F. T. & Braddock-Wilking, J. Hydrogen bonds involving transition-metal centers—a brief review. Acta Crystallogr. B 51, 632–640 (1995).

    Google Scholar 

  41. 41

    Braga, D., Grepioni, F. & Desiraju, G. R. Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1406 (1998).

    CAS  PubMed  Google Scholar 

  42. 42

    Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    CAS  Google Scholar 

  43. 43

    Zhang, Y.-Q. et al. Unusual deprotonated alkynyl hydrogen bonding in metal-supported hydrocarbon assembly. J. Phys. Chem. C 119, 9669–9679 (2015).

    CAS  Google Scholar 

  44. 44

    Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).

    CAS  PubMed  Google Scholar 

  45. 45

    Zhou, X.-L. & White, J. M. Thermal decomposition of C2H5I on Ag(111). Catal. Lett. 2, 375–384 (1989).

    CAS  Google Scholar 

  46. 46

    Zhang, Y.-Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

    PubMed  Google Scholar 

  47. 47

    Di Giovannantonio, M. et al. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7, 8190–8198 (2013).

    CAS  PubMed  Google Scholar 

  48. 48

    Sun, Q. et al. Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016).

    CAS  PubMed  Google Scholar 

  49. 49

    Zhou, X.-L., White, J. M. & Koel, B. E. Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surf. Sci. 218, 201–210 (1989).

    CAS  Google Scholar 

  50. 50

    Lee, G. & Plummer, E. W. Interaction of hydrogen with the Ag(111) surface. Phys. Rev. B 51, 7250–7261 (1995).

    CAS  Google Scholar 

  51. 51

    Fronzoni, G. et al. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. J. Chem. Phys. 141, 044313 (2014).

    PubMed  Google Scholar 

  52. 52

    Zhang, H. & Chi, L. Gold–organic hybrids: on-surface synthesis and perspectives. Adv. Mater. 28, 10492–10498 (2016).

    CAS  PubMed  Google Scholar 

  53. 53

    Lackinger, M. Surface-assisted Ullmann coupling. Chem. Commun. 53, 7872–7885 (2017).

    CAS  Google Scholar 

  54. 54

    Björk, J., Zhang, Y.-Q., Klappenberger, F., Barth, J. V. & Stafström, S. Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal. J. Phys. Chem. C 118, 3181–3187 (2014).

    Google Scholar 

  55. 55

    Liu, J. et al. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces. ACS Nano 9, 6305–6314 (2015).

    CAS  PubMed  Google Scholar 

  56. 56

    Kanuru, V. K. et al. Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). J. Am. Chem. Soc. 132, 8081–8086 (2010).

    CAS  PubMed  Google Scholar 

  57. 57

    VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Google Scholar 

  58. 58

    Bacle, P., Seitsonen, A. P., Iannuzzi, M. & Hutter, J. Chemical reactions on metal-supported hexagonal boron nitride investigated with density functional theory. Chimia 68, 596–601 (2014).

    CAS  PubMed  Google Scholar 

  59. 59

    Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

    CAS  Google Scholar 

  60. 60

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed  Google Scholar 

  61. 61

    Hamada, I. Van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).

    Google Scholar 

  62. 62

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Google Scholar 

  63. 63

    Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    CAS  Google Scholar 

  64. 64

    Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Google Scholar 

  65. 65

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

Download references


The authors acknowledge funding by the German Research Foundation (DFG) Excellence Cluster Munich Center for Advanced Photonics, DFG project KL 2294/3–1 and ERC Advanced Grant MolArt (no. 247299). M.R. acknowledges support by the DFG-priority programs 1459, TR88 ‘3Met’ and the KNMF facility (KIT, Germany). The authors thank the Helmholtz–Zentrum Berlin–Electron storage ring BESSY II for provision of synchrotron radiation at beamline HE-SGM and thank C. Wöll and A. Nefedov for providing access to the HE-SGM end station.

Author information




Y.-Q.Z., J.V.B. and F.K. conceived the experiments. Y.-Q.Z., L.Z. and T.L. performed the STM measurements and analysed the data. Y.-Q.Z., M.P., L.Z., T.L. and F.K. performed the spectroscopy experiments and analysed the data. A.P.S. carried out the DFT calculations. P.D., Z.C., S.K. and M.R. developed the synthesis of the molecules used. Y.-Q.Z., A.P.S., M.R., J.V.B. and F.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yi-Qi Zhang or Mario Ruben or Johannes V. Barth or Florian Klappenberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 38285 kb)

Supplementary movie

Supplementary movie 1 (MOV 1716 kb)

Supplementary movie

Supplementary movie 2 (MOV 2282 kb)

Supplementary information

Crystallographic data for compound 3'. (CIF 490 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Paszkiewicz, M., Du, P. et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nature Chem 10, 296–304 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing