Abstract

Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl–Ag–alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  • Compound

    2-ethynyl-7-iodophenanthrene

  • Compound

    2-ethynylphenanthren-7-yl

  • Compound

    2-ethynylphenanthrene

  • Compound

    bis(7-ethynylphenanthren-2-yl)silver

  • Compound

    bis(7-ethynylphenanthren-2-yl)(phenanthren-2-ylethynyl)silver(IV) hydride

  • Compound

    (7-ethynylphenanthren-2-yl)(phenanthren-2-ylethynyl)silver

  • Compound

    (7-ethynylphenanthren-2-yl)bis(phenanthren-2-ylethynyl)silver(IV) hydride

  • Compound

    bis(phenanthren-2-ylethynyl)silver

  • Compound

    2,7-diiodo-9,10-dihydrophenanthrene

  • Compound

    2,7-diiodophenanthrene

  • Compound

    ((7-iodophenanthren-2-yl)ethynyl)trimethylsilane

  • Compound

    2-bromophenanthrene

  • Compound

    trimethyl(phenanthren-2-ylethynyl)silane

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

  2. 2.

    & From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

  3. 3.

    Harmonices Mundi (Johannes Planck, 1619).

  4. 4.

    , , & Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons. ACS Nano 8, 2918–2928 (2014).

  5. 5.

    , , & Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

  6. 6.

    & Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

  7. 7.

    , & Photonic band structure calculations of two-dimensional Archimedean tiling patterns. Phys. Rev. B 75, 195122 (2007).

  8. 8.

    & Diffusion on Archimedean lattices. Phys. Rev. E 73, 046116 (2006).

  9. 9.

    Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

  10. 10.

    & Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A 214, 237–241 (2001).

  11. 11.

    , & Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 135, 7458–7461 (2013).

  12. 12.

    et al. Self-assembly of complex DNA tessellations by using low-symmetry multi-arm DNA tiles. Angew. Chem. Int. Ed. 128, 9006–9009 (2016).

  13. 13.

    Liquid crystal engineering—new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007).

  14. 14.

    et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

  15. 15.

    , , & Archimedean tiling structures from ABA/CD block copolymer blends having intermolecular association with hydrogen bonding. Macromolecules 39, 2232–2237 (2006).

  16. 16.

    , , & Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

  17. 17.

    , & Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

  18. 18.

    , & Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

  19. 19.

    Tailoring molecular layers at metal surfaces. Nat. Chem. 2, 87–95 (2010).

  20. 20.

    , & Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 91, 101–135 (2016).

  21. 21.

    Two-dimensional functional molecular nanoarchitectures—complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Prog. Surf. Sci. 89, 1–55 (2014).

  22. 22.

    et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).

  23. 23.

    et al. Chiral Kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 130, 11778–11782 (2008).

  24. 24.

    et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl Acad. Sci. USA 110, 6678–6681 (2013).

  25. 25.

    & Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131, 5376–5377 (2009).

  26. 26.

    et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

  27. 27.

    et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 8, 657–662 (2016).

  28. 28.

    & Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

  29. 29.

    et al. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319, 312–315 (2008).

  30. 30.

    et al. Random two-dimensional string networks based on divergent coordination assembly. Nat. Chem. 2, 131–137 (2010).

  31. 31.

    et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).

  32. 32.

    et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389–393 (2015).

  33. 33.

    , , & Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surface. Angew. Chem. Int. Ed. 47, 1076–1079 (2008).

  34. 34.

    et al. Self-assembly of fivefold-symmetric molecules on a threefold-symmetric surface. Angew. Chem. Int. Ed. 48, 1970–1973 (2009).

  35. 35.

    et al. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 131, 3460–3461 (2009).

  36. 36.

    Perspectives in chemistry—steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

  37. 37.

    CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).

  38. 38.

    , , , & The nature of halogen···halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 48, 3838–3841 (2009).

  39. 39.

    et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

  40. 40.

    , , & Hydrogen bonds involving transition-metal centers—a brief review. Acta Crystallogr. B 51, 632–640 (1995).

  41. 41.

    , & Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1406 (1998).

  42. 42.

    The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

  43. 43.

    et al. Unusual deprotonated alkynyl hydrogen bonding in metal-supported hydrocarbon assembly. J. Phys. Chem. C 119, 9669–9679 (2015).

  44. 44.

    Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).

  45. 45.

    & Thermal decomposition of C2H5I on Ag(111). Catal. Lett. 2, 375–384 (1989).

  46. 46.

    et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

  47. 47.

    et al. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7, 8190–8198 (2013).

  48. 48.

    et al. Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016).

  49. 49.

    , & Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surf. Sci. 218, 201–210 (1989).

  50. 50.

    & Interaction of hydrogen with the Ag(111) surface. Phys. Rev. B 51, 7250–7261 (1995).

  51. 51.

    et al. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. J. Chem. Phys. 141, 044313 (2014).

  52. 52.

    & Gold–organic hybrids: on-surface synthesis and perspectives. Adv. Mater. 28, 10492–10498 (2016).

  53. 53.

    Surface-assisted Ullmann coupling. Chem. Commun. 53, 7872–7885 (2017).

  54. 54.

    , , , & Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal. J. Phys. Chem. C 118, 3181–3187 (2014).

  55. 55.

    et al. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces. ACS Nano 9, 6305–6314 (2015).

  56. 56.

    et al. Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). J. Am. Chem. Soc. 132, 8081–8086 (2010).

  57. 57.

    et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

  58. 58.

    , , & Chemical reactions on metal-supported hexagonal boron nitride investigated with density functional theory. Chimia 68, 596–601 (2014).

  59. 59.

    , & A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

  60. 60.

    & Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

  61. 61.

    Van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).

  62. 62.

    , & Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

  63. 63.

    The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

  64. 64.

    , & Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

  65. 65.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Download references

Acknowledgements

The authors acknowledge funding by the German Research Foundation (DFG) Excellence Cluster Munich Center for Advanced Photonics, DFG project KL 2294/3–1 and ERC Advanced Grant MolArt (no. 247299). M.R. acknowledges support by the DFG-priority programs 1459, TR88 ‘3Met’ and the KNMF facility (KIT, Germany). The authors thank the Helmholtz–Zentrum Berlin–Electron storage ring BESSY II for provision of synchrotron radiation at beamline HE-SGM and thank C. Wöll and A. Nefedov for providing access to the HE-SGM end station.

Author information

Affiliations

  1. Physik-Department E20, Technische Universität München, 85748 Garching, Germany

    • Yi-Qi Zhang
    • , Mateusz Paszkiewicz
    • , Liding Zhang
    • , Tao Lin
    • , Johannes V. Barth
    •  & Florian Klappenberger
  2. Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

    • Ping Du
    • , Zhi Chen
    • , Svetlana Klyatskaya
    •  & Mario Ruben
  3. IPCMS-CNRS, Université de Strasbourg, 23 rue de Loess, 67034 Strasbourg, France

    • Mario Ruben
  4. École Normale Supérieure, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France

    • Ari P. Seitsonen

Authors

  1. Search for Yi-Qi Zhang in:

  2. Search for Mateusz Paszkiewicz in:

  3. Search for Ping Du in:

  4. Search for Liding Zhang in:

  5. Search for Tao Lin in:

  6. Search for Zhi Chen in:

  7. Search for Svetlana Klyatskaya in:

  8. Search for Mario Ruben in:

  9. Search for Ari P. Seitsonen in:

  10. Search for Johannes V. Barth in:

  11. Search for Florian Klappenberger in:

Contributions

Y.-Q.Z., J.V.B. and F.K. conceived the experiments. Y.-Q.Z., L.Z. and T.L. performed the STM measurements and analysed the data. Y.-Q.Z., M.P., L.Z., T.L. and F.K. performed the spectroscopy experiments and analysed the data. A.P.S. carried out the DFT calculations. P.D., Z.C., S.K. and M.R. developed the synthesis of the molecules used. Y.-Q.Z., A.P.S., M.R., J.V.B. and F.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Yi-Qi Zhang or Mario Ruben or Johannes V. Barth or Florian Klappenberger.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary movie

    Supplementary movie 1

  2. 2.

    Supplementary movie

    Supplementary movie 2

Crystallographic information files

  1. 1.

    Supplementary information

    Crystallographic data for compound 3'.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.2924