Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures


Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal–organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and characterization of the TRD ZIF-8 particles.
Figure 2: Ordered rhombohedral self-assembled superstructures.
Figure 3: Computer simulation and FE-SEM image of the formation of the densest rhombohedral lattice.
Figure 4: Photonic properties.
Figure 5: Ordered self-assembled superstructures made of MOF particles with other morphologies.


  1. 1

    Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Von Freymann, G., Kitaev, V., Lotsch, B. V . & Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 42, 2528–2554 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Galisteo-López, J. F. et al. Self-assembled photonic structures. Adv. Mater. 23, 30–69 (2011).

    Article  Google Scholar 

  4. 4

    Kim, S.-H., Lee, S. Y., Yang, S.-M. & Yi, G.-R. Self-assembled colloidal structures for photonics. NPG Asia Mater. 3, 25–33 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  6. 6

    Quan, Z. & Fang, J. Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nat. Mater. 10, 230–235 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).

    Article  Google Scholar 

  12. 12

    Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Ming, T. et al. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 47, 9685–9690 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Young, K. L. et al. A directional entropic force approach to assemble anisotropic nanoparticles into superlattices. Angew. Chem. Int. Ed. 52, 13980–13984 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2011).

    Article  Google Scholar 

  16. 16

    Tao, A. R., Ceperley, D. P., Sinsermsuksakul, P., Neureuther, A. R. & Yang, P. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 8, 4033–4038 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Xie, S. et al. Supercrystals from crystallization of octahedral MnO nanocrystals. J. Phys. Chem. C 113, 19107–19111 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Volkov, N., Lyubartsev, A. & Bergström, L. Phase transitions and thermodynamic properties of dense assemblies of truncated nanocubes and cuboctahedra. Nanoscale 4, 4765–4771 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609–614 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Huang, X.-C., Lin, Y.-Y., Zhang, J.-P. & Chen, X -M. Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45, 1557–1559 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  26. 26

    Chen, B., Yang, Z., Zhu, Y. & Xia, Y. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Cravillon, J. et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Cravillon, J. et al. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 14, 492–498 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Pan, Y. et al. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13, 6937–6940 (2011).

    CAS  Article  Google Scholar 

  30. 30

    de Graaf, J., van Roij, R. & Dijkstra, M. Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).

    Article  Google Scholar 

  31. 31

    Filion, L. et al. Efficient method for predicting crystal structures at finite temperature: variable box shape simulations. Phys. Rev. Lett. 103, 188302 (2009).

    Article  Google Scholar 

  32. 32

    Ahles, M. et al. Spectroscopic ellipsometry on opaline photonic crystals. Opt. Commun. 246, 1–7 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Zhang, K. et al. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 49, 3245–3247 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Schaate, A. et al. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chem. Eur. J. 17, 6643–6651 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported by EU FP7 ERC-Co 615954, the Spanish MINECO (projects PN MAT2015-65354-C2-1-R and MAT2015-68075-R [SIFE2]) and the Comunidad de Madrid project S2013/MIT-2740 (PHAMA_2.0). It was also funded by the CERCA Programme/Generalitat de Catalunya. The authors based at ICN2 and ICMAB acknowledge the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program (grants SEV-2013-0295 and SEV-2015-0496). The authors thank J. Albalad and J. Saiz for their help in the TGA and reflectance measurements, respectively.

Author information




C.A. and I.I. synthesized the ZIF-8 particles and the corresponding self-assembled superstructures. A.C.-S. synthesized the UiO-66 particles and the corresponding self-assembled superstructures. N.T. and M.D. performed the Floppy-Box Monte Carlo simulations. C.A., J.A.P., A.B. and C.L. performed and analysed the photonic measurements. M.I.A. performed the ellipsometry characterization, and C.A. and J.P.-C. performed the sorption measurements. D.M. conceived the project and drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Cefe López or Daniel Maspoch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7351 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avci, C., Imaz, I., Carné-Sánchez, A. et al. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chem 10, 78–84 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing