Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organocatalytic asymmetric arylation of indoles enabled by azo groups

Abstract

Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon–hydrogen (C–H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution–cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct arylation via formal nucleophilic aromatic substitution.
Figure 2: Control experiments and proposed reaction mechanism.

Similar content being viewed by others

References

  1. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wencel-Delord, J., Droge, T., Liu, F. & Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 40, 4740–4761 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    CAS  PubMed  Google Scholar 

  6. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    CAS  PubMed  Google Scholar 

  7. McManus, J. B. & Nicewicz, D. A. Direct C–H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 139, 2880–2883 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  9. Chen, Y.-H. et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols. J. Am. Chem. Soc. 137, 15062–15065 (2015).

    CAS  PubMed  Google Scholar 

  10. Li, S., Zhang, J.-W., Li, X.-L., Cheng, D.-J. & Tan, B. Phosphoric acid-catalyzed asymmetric synthesis of spinol derivatives. J. Am. Chem. Soc. 138, 16561–16566 (2016).

    CAS  PubMed  Google Scholar 

  11. Fahey, D. R. The coordination-catalyzed ortho-halogenation of azobenzene. J. Organomet. Chem. 27, 283–292 (1971).

    CAS  Google Scholar 

  12. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

    CAS  PubMed  Google Scholar 

  13. Miyamura, S., Tsurugi, H., Satoh, T. & Miura, M. Rhodium-catalyzed regioselective arylation of phenylazoles and related compounds with arylboron reagents via C–H bond cleavage. J. Organomet. Chem. 693, 2438–2442 (2008).

    CAS  Google Scholar 

  14. Li, H., Li, P. & Wang, L. Direct access to acylated azobenzenes via Pd-catalyzed C–H functionalization and further transformation into an indazole backbone. Org. Lett. 15, 620–623 (2013).

    CAS  PubMed  Google Scholar 

  15. Ryu, T., Min, J., Choi, W., Jeon, W. H. & Lee, P. H. Synthesis of 2-aryl-2H-benzotrizoles from azobenzenes and N-sulfonyl azides through sequential rhodium-catalyzed amidation and oxidation in one pot. Org. Lett. 16, 2810–2813 (2014).

    CAS  PubMed  Google Scholar 

  16. Wangweerawong, A., Bergman, R. G. & Ellman, J. A. Asymmetric synthesis of α-branched amines via Rh(III)-catalyzed C–H bond functionalization. J. Am. Chem. Soc. 136, 8520–8523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Geng, X. & Wang, C. Rhenium-catalyzed C–H aminocarbonylation of azobenzenes with isocyanates. Org. Biomol. Chem. 13, 7619–7623 (2015).

    CAS  PubMed  Google Scholar 

  18. Zhao, D., Vásquez-Céspedes, S. & Glorius, F. Rhodium(III)-catalyzed cyclative capture approach to diverse 1-aminoindoline derivatives at room temperature. Angew. Chem. Int. Ed. 54, 1657–1661 (2015).

    CAS  Google Scholar 

  19. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    CAS  PubMed  Google Scholar 

  20. Dondoni, A. & Massi, A. Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed. 47, 4638–4660 (2008).

    CAS  Google Scholar 

  21. Bertelsen, S. & Jorgensen, K. A. Organocatalysis—after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009).

    CAS  PubMed  Google Scholar 

  22. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    CAS  Google Scholar 

  23. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    CAS  PubMed  Google Scholar 

  24. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    CAS  PubMed  Google Scholar 

  25. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    CAS  PubMed  Google Scholar 

  26. Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).

    CAS  Google Scholar 

  27. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalysed asymmetric bromination. Science 328, 1251–1255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barrett, K. T. & Miller, S. J. Enantioselective synthesis of atropisomeric benzamides through peptide-catalyzed bromination. J. Am. Chem. Soc. 135, 2963–2966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mori, K. et al. Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalysed desymmetrization/kinetic resolution sequence. J. Am. Chem. Soc. 135, 3964–3970 (2013).

    CAS  PubMed  Google Scholar 

  30. Miyaji, R., Asano, K. & Matsubara, S. Bifunctional organocatalysts for the enantioselective synthesis of axially chiral isoquinoline N-oxides. J. Am. Chem. Soc. 137, 6766–6769 (2015).

    CAS  PubMed  Google Scholar 

  31. Diener, M. E., Metrano, A. J., Kusano, S. & Miller, S. J. Enantioselective synthesis of 3-arylquinazolin-4-(3H)-ones via peptide-catalysed atroposelective bromination. J. Am. Chem. Soc. 137, 12369–12377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, C., Huang, H., Li, X., Zhang, Y. & Wang, W. Dynamic kinetic resolution of biaryl lactones via a chiral bifunctional amine thiourea catalysed highly atropo-enantioselective transesterification. J. Am. Chem. Soc. 138, 6956–6959 (2016).

    CAS  PubMed  Google Scholar 

  33. Metrano, A. J. et al. Diversity of secondary structure in catalytic peptides with β-turn-biased sequences. J. Am. Chem. Soc. 139, 492–516 (2017).

    CAS  PubMed  Google Scholar 

  34. Jolliffe, J. D., Armstrong, R. J. & Smith, M. D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nat. Chem. 9, 558–562 (2017).

    CAS  PubMed  Google Scholar 

  35. Zhang, H.-H. et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew. Chem. Int. Ed. 56, 116–121 (2017).

    CAS  Google Scholar 

  36. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Google Scholar 

  37. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Google Scholar 

  38. Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    CAS  PubMed  Google Scholar 

  39. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric binol-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  40. Wang, Y.-B., Zheng, S.-C., Hu, Y.-M. & Tan, B. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nat. Commun. 8, 15489 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Zhang, L., Zhang, J., Ma, J., Cheng, D.-J. & Tan, B. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal–Knorr reaction. J. Am. Chem. Soc. 139, 1714–1717 (2017).

    CAS  PubMed  Google Scholar 

  42. Barrett, K. T., Metrano, A. J., Rablen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71–75 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Steven, A. & Overman, L. E. Total synthesis of complex cyclotryptamine alkaloids: stereocontrolled construction of quaternary carbon stereocenters. Angew. Chem. Int. Ed. 46, 5488–5508 (2007).

    CAS  Google Scholar 

  44. Repka, L. M. & Reisman, S. E. Recent developments in the catalytic, asymmetric construction of pyrroloindolines bearing all-carbon quaternary stereocenters. J. Org. Chem. 78, 12314–12320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Repka, L. M., Ni, J. & Reisman, S. E. Enantioselective synthesis of pyrroloindolines by a formal [3+2] cycloaddition reaction. J. Am. Chem. Soc. 132, 14418–14420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spangler, J. E. & Davies, H. M. L. Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles. J. Am. Chem. Soc. 135, 6802–6805 (2013).

    CAS  PubMed  Google Scholar 

  47. Chai, Z. et al. Copper(I)-catalyzed kinetic resolution of N-sulfonylaziridines with indoles: efficient construction of pyrroloindolines. J. Am. Chem. Soc. 137, 10088–10091 (2015).

    CAS  PubMed  Google Scholar 

  48. Quinonero, O. et al. Combining organocatalysis with central-to-axial chirality conversion: atroposelective Hantzsch-type synthesis of 4-arylpyridines. Angew. Chem. Int. Ed. 55, 1401–1405 (2016).

    CAS  Google Scholar 

  49. Raut, V. S. et al. Enantioselective syntheses of furan atropisomers by an oxidative central-to-axial chirality conversion strategy. J. Am. Chem. Soc. 139, 2140–2143 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant no. 21572095), Shenzhen special funds for the development of biomedicine, the Internet, new energy and new material industries (JCYJ20150430160022510). B.T. acknowledges the Thousand Young Talents Program for financial support. Dedicated to Scott J. Miller for his great contribution to the construction of axially chiral compounds via peptide catalysis. Dedicated to Professor Shizheng Zhu on the occasion of his 70th birthday. Dedicated to Professor Chi-Ming Che on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Contributions

B.T. conceived and designed the experiments. L.-W.Q. and J.-H.M. performed experiments and prepared the Supplementary Information. J.Z. helped with collecting some new compounds and analysing the data. B.T. wrote the paper. L.-W.Q. and J.-H.M. contributed equally to this work. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 16466 kb)

Supplementary information

Crystallographic data for compound 3o (CIF 1099 kb)

Supplementary information

Crystallographic data for compound 5d (CIF 1565 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 1565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, LW., Mao, JH., Zhang, J. et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nature Chem 10, 58–64 (2018). https://doi.org/10.1038/nchem.2866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing