Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy

Abstract

The transition state governs how chemical bonds form and cleave during a chemical reaction and its direct characterization is a long-standing challenge in physical chemistry. Transition state spectroscopy experiments based on negative-ion photodetachment provide a direct probe of the vibrational structure and metastable resonances that are characteristic of the reactive surface. Dynamical resonances are extremely sensitive to the topography of the reactive surface and provide an exceptional point of comparison with theory. Here we study the seven-atom F + CH3OH → HF + CH3O reaction using slow photoelectron velocity-map imaging spectroscopy of cryocooled CH3OHF anions. These measurements reveal spectral features associated with a manifold of vibrational Feshbach resonances and bound states supported by the post-transition state potential well. Quantum dynamical calculations yield excellent agreement with the experimental results, allow the assignment of spectral structure and demonstrate that the key dynamics of complex bimolecular reactions can be captured with a relatively simple theoretical framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic energy diagram for the photodetachment of the CH3OHF anion to the neutral F + CH3OH → HF + CH3O reactive PES.
Figure 2: Experimental and theoretical photodetachment spectra of CH3OHF and CH3ODF showing transitions to resonances in the F + CH3OH → HF + CH3O product well.
Figure 3: Cuts of the CH3OHF anion vibrational ground-state wavefunction and representative F + CH3OH → HF + CH3O resonance wavefunctions.

Similar content being viewed by others

References

  1. Herschbach, D. R. Reactive collisions in crossed molecular beams. Discuss. Faraday Soc. 33, 149–161 (1962).

    Article  CAS  Google Scholar 

  2. Lee, Y. T., McDonald, J. D., LeBreton, P. R. & Herschbach, D. R. Molecular beam reactive scattering apparatus with electron bombardment detector. Rev. Sci. Instrum. 40, 1402–1408 (1969).

    Article  CAS  Google Scholar 

  3. Levine, R. D. Molecular Reaction Dynamics (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  4. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    Article  CAS  Google Scholar 

  5. Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996).

    Article  CAS  Google Scholar 

  6. Guo, H. & Liu, K. Control of chemical reactivity by transition-state and beyond. Chem. Sci. 7, 3992–4003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polanyi, J. C. & Zewail, A. H. Direct observation of the transition state. Acc. Chem. Res. 28, 119–132 (1995).

    Article  CAS  Google Scholar 

  8. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, T. et al. Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening. Science 347, 60–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, K. Vibrational control of bimolecular reactions with methane by mode, bond, and stereoselectivity. Annu. Rev. Phys. Chem. 67, 91–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Neumark, D. M. Probing the transition state with negative ion photodetachment: experiment and theory. Phys. Chem. Chem. Phys. 7, 433–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J. B. et al. Spectroscopic observation of resonances in the F + H2 reaction. Science 349, 510–513 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ervin, K. M., Ho, J. & Lineberger, W. C. A study of the singlet and triplet states of vinylidene by photoelectron spectroscopy of H2CC, D2CC and HDCC. Vinylidene–acetylene isomerization. J. Chem. Phys. 91, 5974–5992 (1989).

    Article  CAS  Google Scholar 

  14. Wenthold, P. G., Hrovat, D. A., Borden, W. T. & Lineberger, W. C. Transition-state spectroscopy of cyclooctatetraene. Science 272, 1456–1459 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Osterwalder, A., Nee, M. J., Zhou, J. & Neumark, D. M. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. J. Chem. Phys. 121, 6317–6322 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Neumark, D. M. Slow electron velocity-map imaging of negative ions: applications to spectroscopy and dynamics. J. Phys. Chem. A 112, 13287–13301 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hock, C., Kim, J. B., Weichman, M. L., Yacovitch, T. I. & Neumark, D. M. Slow photoelectron velocity-map imaging spectroscopy of cold negative ions. J. Chem. Phys. 137, 244201 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. Weichman, M. L., DeVine, J. A., Levine, D. S., Kim, J. B. & Neumark, D. M. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging. Proc. Natl Acad. Sci. USA 113, 1698–1705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeVine, J. A. et al. Non-adiabatic effects on excited states of vinylidene observed with slow photoelectron velocity-map imaging. J. Am. Chem. Soc. 138, 16417–16425 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Bradforth, S. E., Arnold, D. W., Metz, R. B., Weaver, A. & Neumark, D. M. Spectroscopy of the transition state: hydrogen abstraction reactions of fluorine. J. Phys. Chem. 95, 8066–8078 (1991).

    Article  CAS  Google Scholar 

  21. Ray, A. W., Agarwal, J., Shen, B. B., Schaefer, H. F. & Continetti, R. E. Energetics and transition-state dynamics of the F + HOCH3 → HF + OCH3 reaction. Phys. Chem. Chem. Phys. 18, 30612–30621 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Schatz, G. C., Bowman, J. M. & Kuppermann, A. Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F + H2 → FH + H reaction. J. Chem. Phys. 63, 674–684 (1975).

    Article  CAS  Google Scholar 

  23. Wyatt, R. E. & Redmon, M. J. Quantum-mechanical differential reaction cross sections for the F + H2 (v = 0) → FH (v′ = 2,3) + H reaction. Chem. Phys. Lett. 96, 284–288 (1983).

    Article  CAS  Google Scholar 

  24. Schatz, G. C. Detecting resonances. Science 288, 1599–1600 (2000).

    Article  CAS  Google Scholar 

  25. Zare, R. N. Resonances in reaction dynamics. Science 311, 1383–1385 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, K. Quantum dynamical resonances in chemical reactions: from A + BC to polyatomic systems. Adv. Chem. Phys. 149, 1–46 (2012).

    Article  CAS  Google Scholar 

  27. Neumark, D. M., Wodtke, A. M., Robinson, G. N., Hayden, C. C. & Lee, Y. T. Molecular beam studies of the F + H2 reaction. J. Chem. Phys. 82, 3045–3066 (1985).

    Article  CAS  Google Scholar 

  28. Skodje, R. T. et al. Observation of a transition state resonance in the integral cross section of the F + HD reaction. J. Chem. Phys. 112, 4536–4552 (2000).

    Article  CAS  Google Scholar 

  29. Qiu, M. et al. Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311, 1440–1443 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ren, Z., Sun, Z., Zhang, D. & Yang, X. A review of dynamical resonances in A + BC chemical reactions. Rep. Prog. Phys. 80, 026401 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Russell, C. L. & Manolopoulos, D. E. How to observe the elusive resonances in F + H2 reactive scattering. Chem. Phys. Lett. 256, 465–473 (1996).

    Article  CAS  Google Scholar 

  32. Garand, E., Zhou, J., Manolopoulos, D. E., Alexander, M. H. & Neumark, D. M. Nonadiabatic interactions in the Cl + H2 reaction probed by ClH2 and ClD2 photoelectron imaging. Science 319, 72–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Waller, I. M., Kitsopoulos, T. N. & Neumark, D. M. Threshold photodetachment spectroscopy of the I + HI transition-state region. J. Phys. Chem. 94, 2240–2242 (1990).

    Article  CAS  Google Scholar 

  34. Otto, R. et al. Imaging dynamics on the F + H2O → HF + OH potential energy surfaces from wells to barriers. Science 343, 396–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Westermann, T. et al. Resonances in the entrance channel of the elementary chemical reaction of fluorine and methane. Angew. Chem. Int. Ed. 53, 1122–1126 (2014).

    Article  CAS  Google Scholar 

  36. Active Thermochemical Tables Values based on v. 1.118 of the Thermochemical Network (Argonne National Laboratory 2015); http://ATcT.anl.gov

  37. Feng, H., Randall, K. R. & Schaefer, H. F. Reaction of a fluorine atom with methanol: potential energy surface considerations. J. Phys. Chem. A 119, 1636–1641 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Glauser, W. A. & Koszykowski, M. L. Anomalous methoxy radical yields in the fluorine + methanol reaction. 2. Theory. J. Phys. Chem. 95, 10705–10713 (1991).

    Article  CAS  Google Scholar 

  39. Jodkowski, J. T., Rayez, M.-T., Rayez, J.-C., Bérces, T. & Dóbé, S. Theoretical study of the kinetics of the hydrogen abstraction from methanol. 1. Reaction of methanol with fluorine atoms. J. Phys. Chem. A 102, 9219–9229 (1998).

    Article  CAS  Google Scholar 

  40. Meier, U., Grotheer, H. H. & Just, T. Temperature dependence and branching ratio of the CH3OH + OH reaction. Chem. Phys. Lett. 106, 97–101 (1984).

    Article  CAS  Google Scholar 

  41. Wickramaaratchi, M. A., Setser, D. W., Hildebrandt, H., Körbitzer, B. & Heydtmann, H. Evaluation of HF product distributions deduced from infrared chemiluminescence. II. F atom reactions. Chem. Phys. 94, 109–129 (1985).

    Article  CAS  Google Scholar 

  42. Khatoon, T. & Hoyermann, K. The reactions of fluorine atoms with normal and deuterated methanols. Ber. Bunsen-Ges. Phys. Chem. 92, 669–673 (1988).

    Article  CAS  Google Scholar 

  43. Durant, J. L. Anomalous methoxy radical yields in the fluorine + methanol reaction. 1. Experiment. J. Phys. Chem. 95, 10701–10704 (1991).

    Article  CAS  Google Scholar 

  44. Dóbé, S., Bérces, T., Temps, F., Wagner, H. G. & Ziemer, H. Formation of methoxy and hydroxymethyl free radicals in selected elementary reactions. 25th Symp. Int. Combust. Proc. 25, 775–781 (1994).

    Article  Google Scholar 

  45. Wladkowski, B. D., East, A. L. L., Mihalick, J. E., Allen, W. D. & Brauman, J. I. The proton-transfer surface of CH3OHF. J. Chem. Phys. 100, 2058–2088 (1994).

    Article  CAS  Google Scholar 

  46. Sun, L., Song, K., Hase, W. L., Sena, M. & Riveros, J. M. Stationary points for the OH + CH3F → CH3OH + F potential energy surface. Int. J. Mass Spectrom. 227, 315–325 (2003).

    Article  CAS  Google Scholar 

  47. Gonzales, J. M. et al. Definitive ab initio studies of model SN2 reactions CH3X + F (X = F, Cl, CN, OH, SH, NH2, PH2). Chem. Eur. J. 9, 2173–2192 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Knizia, G., Adler, T. B. & Werner, H.-J. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130, 054104 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Jiang, B., Li, J. & Guo, H. Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial-neural network approach. Int. Rev. Phys. Chem. 35, 479–506 (2016).

    Article  CAS  Google Scholar 

  50. Li, J., Li, Y. & Guo, H. Covalent nature of X···H2O (X = F, Cl, and Br) interactions. J. Chem. Phys. 138, 141102 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Manz, J., Meyer, R., Pollak, E. & Romelt, J. A new possibility of chemical bonding. vibrational stabilization of IHI. Chem. Phys. Lett. 93, 184–187 (1982).

    Article  CAS  Google Scholar 

  52. Manz, J., Meyer, R. & Schor, H. H. R. Interplay of vibrational and van der Waals type bonding. J. Chem. Phys. 80, 1562–1568 (1984).

    Article  CAS  Google Scholar 

  53. Fleming, D. G., Manz, J., Sato, K. & Takayanagi, T. Fundamental change in the nature of chemical bonding by isotopic substitution. Angew. Chem. Int. Ed. 53, 13706–13709 (2014).

    Article  CAS  Google Scholar 

  54. Levine, R. D. & Wu, S. F. Resonances in reactive collisions: computational study of the H + H2 collision. Chem. Phys. Lett. 11, 557–561 (1971).

    Article  Google Scholar 

  55. Ma, J. & Guo, H. Reactive and nonreactive Feshbach resonances accessed by photodetachment of FH2O. J. Phys. Chem. Lett. 6, 4822–4826 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002–1009 (1948).

    Article  CAS  Google Scholar 

  57. Even, U., Jortner, J., Noy, D., Lavie, N. & Cossart-Magos, C. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112, 8068–8071 (2000).

    Article  CAS  Google Scholar 

  58. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  59. Guo, H. A time-independent theory of photodissociation based on polynomial propagation. J. Chem. Phys. 108, 2466–2472 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the US Air Force Office of Scientific Research (Grants no. FA9550-16-1-0097 to D.M.N. and no. FA9550-15-1-0305 to H.G.), and the National Natural Science Foundation of China (Contracts no. 21573027 to J.L. and no. 91441107 to J.M.). M.L.W. thanks the National Science Foundation for a graduate research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The experimental research was conceived and supervised by D.M.N. The experiments were carried out by M.L.W., J.A.D. and M.C.B. Experimental data analysis and interpretation was performed by M.L.W. Theoretical calculations were conceived by J.L., J.M. and H.G. and performed by J.L., L.G. and J.M. The paper was written by M.L.W., with the theoretical sections contributed by J.L., J.M. and H.G. All of the authors contributed to discussions about the results and manuscript.

Corresponding authors

Correspondence to Jun Li or Daniel M. Neumark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weichman, M., DeVine, J., Babin, M. et al. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy. Nature Chem 9, 950–955 (2017). https://doi.org/10.1038/nchem.2804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing