Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy

Abstract

The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH3 → HF + NH2 reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH3 anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental–theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH3 PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy diagram for photodetachment of FNH3 onto the transition-state region of the neutral F + NH3 reaction.
Fig. 2: Photodetachment spectra of FNH3.
Fig. 3: 2D plots of F + NH3 wavefunctions accessed via photodetachment.

Similar content being viewed by others

Data availability

Data are provided with this paper and can be downloaded at https://doi.org/10.5281/zenodo.7332846. Source data are provided with this paper.

Code availability

The associated code, such as the subroutine to generate anion and neutral PESs and the quantum scattering code, is available on GitHub at https://github.com/apmtcc/AB-CDE and described in the README file.

References

  1. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107 (1935).

    Article  CAS  Google Scholar 

  2. Polanyi, J. C. & Zewail, A. H. Direct observation of the transition state. Acc. Chem. Res. 28, 119–132 (1995).

    Article  CAS  Google Scholar 

  3. Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996).

    Article  CAS  Google Scholar 

  4. Guo, H. & Liu, K. Control of chemical reactivity by transition-state and beyond. Chem. Sci. 7, 3992–4003 (2016).

    Article  CAS  Google Scholar 

  5. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  CAS  Google Scholar 

  6. Liu, K. P. Vibrational control of bimolecular reactions with methane by mode, bond and stereo selectivity. Annu. Rev. Phys. Chem. 67, 91–111 (2016).

    Article  CAS  Google Scholar 

  7. Yang, T. G. et al. Extremely short-lived reaction resonances in Cl plus HD (v = 1) → DCl plus H due to chemical bond softening. Science 347, 60–63 (2015).

    Article  CAS  Google Scholar 

  8. Ervin, K. M., Ho, J. & Lineberger, W. C. A study of the singlet and triplet states of Vinylidene by photoelectron spectroscopy of H2C=C, D2C=C and HDC=C. Vinylidene-acetylene isomerization. J. Chem. Phys. 91, 5974 (1989).

    Article  CAS  Google Scholar 

  9. Wenthold, P. G., Hrovat, D. A., Borden, W. T. & Lineberger, W. C. Transition-state spectroscopy of cyclooctatetraene. Science 272, 1456–1459 (1996).

    Article  CAS  Google Scholar 

  10. DeVine, J. A. et al. Encoding of vinylidene isomerization in its anion photoelectron spectrum. Science 358, 336–339 (2017).

    Article  CAS  Google Scholar 

  11. Metz, R. B., Weaver, A., Bradforth, S. E., Kitsopoulos, T. N. & Neumark, D. M. Probing the transition state with negative ion photodetachment: the Cl + HCl and Br + HBr reactions. J. Phys. Chem. 94, 1377–1388 (1990).

    Article  Google Scholar 

  12. Bradforth, S. E., Arnold, D. W., Metz, R. B., Weaver, A. & Neumark, D. M. Spectroscopy of the transition state: hydrogen abstraction reactions of fluorine. J. Phys. Chem. 95, 8066–8078 (1991).

    Article  CAS  Google Scholar 

  13. Manolopoulos, D. E. et al. The transition state of the F + H2 reaction. Science 262, 1852–1855 (1993).

    Article  CAS  Google Scholar 

  14. Bradforth, S. E., Weaver, A., Arnold, D. W., Metz, R. B. & Neumark, D. M. Examination of the Br + HI, Cl + HI and F + HI hydrogen abstraction transfer reactions by photoelectron spectroscopy of BrHI, ClHI and FHI. J. Chem. Phys. 92, 7205–7222 (1990).

    Article  CAS  Google Scholar 

  15. Heller, E. J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 14, 368–375 (1981).

    Article  CAS  Google Scholar 

  16. Lorquet, A. J., Lorquet, J. C., Delwiche, J. & Hubin-Franskin, M. J. Intramolecular dynamics by photoelectron spectroscopy. I. Application to N2+, HBr+ and HCN+. J. Chem. Phys. 76, 4692–4699 (1982).

    Article  CAS  Google Scholar 

  17. Neumark, D. M. Probing the transition state with negative ion photodetachment: experiment and theory. Phys. Chem. Chem. Phys. 7, 433–442 (2005).

    Article  CAS  Google Scholar 

  18. Kitsopoulos, T. N., Waller, I. M., Loeser, J. G. & Neumark, D. M. High resolution threshold photodetachment spectroscopy of negative ions. Chem. Phys. Lett. 159, 300–306 (1989).

    Article  CAS  Google Scholar 

  19. Hock, C., Kim, J. B., Weichman, M. L., Yacovitch, T. I. & Neumark, D. M. Slow photoelectron velocity-map imaging spectroscopy of cold negative ions. J. Chem. Phys. 137, 224201 (2012).

    Article  Google Scholar 

  20. Waller, I. M., Kitsopoulos, T. N. & Neumark, D. M. Threshold photodetachment spectroscopy of the I + HI transition state region. J. Phys. Chem. 94, 2240–2242 (1990).

    Article  CAS  Google Scholar 

  21. Kim, J. B. et al. Spectroscopic observation of resonances in the F + H2 reaction. Science 349, 510–513 (2015).

    Article  CAS  Google Scholar 

  22. Westermann, T. et al. Resonances in the entrance channel of the elementary chemical reaction of fluorine and methane. Angew. Chem. Int. Ed. 53, 1122–1126 (2014).

    Article  CAS  Google Scholar 

  23. Weichman, M. L. et al. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy. Nat. Chem. 9, 950–955 (2017).

    Article  CAS  Google Scholar 

  24. Wang, T. et al. Dynamical resonances in chemical reactions. Chem. Soc. Rev. 47, 6744–6763 (2018).

    Article  CAS  Google Scholar 

  25. Zhang, B. L. & Liu, K. P. Imaging a reactive resonance in the Cl + CH4 reaction. J. Chem. Phys. 122, 101102 (2005).

    Article  Google Scholar 

  26. Zhang, X., Li, L., Chen, J., Liu, S. & Zhang, D. H. Feshbach resonances in the F + H2O → HF + OH reaction. Nat. Commun. 11, 223 (2020).

    Article  CAS  Google Scholar 

  27. Tian, L., Zhu, Y. F., Song, H. W. & Yang, M. H. Theoretical study of the F(2P) + NH3 → HF + NH2 reaction on an accurate potential energy surface: dynamics and kinetics. Phys. Chem. Chem. Phys. 21, 11385–11394 (2019).

    Article  CAS  Google Scholar 

  28. Manocha, A. S., Setser, D. W. & Wickramaaratchi, M. A. Vibrational energy disposal in reactions of fluorine atoms with hydrides of groups III, IV and V. Chem. Phys. 76, 129–146 (1983).

    Article  CAS  Google Scholar 

  29. Donaldson, D. J., Parsons, J., Sloan, J. J. & Stolow, A. Vibrational-energy partitioning in the reaction of F atoms with NH3 and ND3. Chem. Phys. 85, 47–62 (1984).

    Article  CAS  Google Scholar 

  30. Wategaonkar, S. & Setser, D. W. Vibrational energy disposal in the reactions of F atoms with NH3, ND3, N2H4 and CH3ND2. J. Chem. Phys. 86, 4477–4487 (1987).

    Article  CAS  Google Scholar 

  31. Xiao, C. F., Shen, G. L., Wang, X. Y., Fan, H. J. & Yang, X. M. Crossed beams study on the dynamics of the F-atom reaction with ammonia. J. Phys. Chem. A 114, 4520–4523 (2010).

    Article  CAS  Google Scholar 

  32. Espinosa-Garcia, J. & Corchado, J. C. Analytical surface for the reaction with no saddle-point NH3 + F → NH2 + FH. Application of variational transition state theory. J. Phys. Chem. A 101, 7336–7344 (1997).

    Article  CAS  Google Scholar 

  33. Espinosa-Garcia, J. & Monge-Palacios, M. Theoretical study of the F + NH3 and F + ND3 reactions: mechanism and comparison with experiment. J. Phys. Chem. A 115, 13759–13763 (2011).

    Article  CAS  Google Scholar 

  34. Weichman, M. L., DeVine, J. A., Levine, D. S., Kim, J. B. & Neumark, D. M. Isomer-specific vibronic structure of the 9-, 1- and 2-anthracenyl radicals via slow photoelectron velocity-map imaging. Proc. Natl Acad. Sci. USA 113, 1698–1705 (2016).

    Article  CAS  Google Scholar 

  35. DeWitt, M., Babin, M. C. & Neumark, D. M. High-resolution photoelectron spectroscopy of vibrationally excited OH. J. Phys. Chem. A 125, 7260–7265 (2021).

    Article  CAS  Google Scholar 

  36. Otto, R. et al. Imaging dynamics on the F + H2O → HF plus OH potential energy surfaces from wells to barriers. Science 343, 396–399 (2014).

    Article  CAS  Google Scholar 

  37. Feng, H., Sun, W. G., Xie, Y. M. & Schaefer, H. F. Is there an entrance complex for the F + NH3 reaction? Chem. Asian J. 6, 3152–3156 (2011).

    Article  CAS  Google Scholar 

  38. Espinosa-Garcia, J., Fernandez-Ramos, A., Suleimanov, Y. V. & Corchado, J. C. Theoretical kinetics study of the F(2P) + NH3 hydrogen abstraction reaction. J. Phys. Chem. A 118, 554–560 (2014).

  39. Tian, L., Song, H. & Yang, M. Effects of bending excitation on the reaction dynamics of fluorine atoms with ammonia. Phys. Chem. Chem. Phys. 23, 2715–2722 (2021).

    Article  CAS  Google Scholar 

  40. Ma, J. Y. & Guo, H. Reactive and nonreactive Feshbach resonances accessed by photodetachment of FH2O. J. Phys. Chem. Lett. 6, 4822–4826 (2015).

    Article  CAS  Google Scholar 

  41. Yacovitch, T. I. et al. Vibrationally resolved transition state spectroscopy of the F + H2 and F + CH4 reactions. Faraday Discuss. 157, 399–414 (2012).

    Article  CAS  Google Scholar 

  42. Osterwalder, A., Nee, M. J., Zhou, J. & Neumark, D. M. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. J. Chem. Phys. 121, 6317–6322 (2004).

    Article  CAS  Google Scholar 

  43. Neumark, D. M. Slow electron velocity-map imaging of negative ions: applications to spectroscopy and dynamics. J. Phys. Chem. A 112, 13287–13301 (2008).

    Article  CAS  Google Scholar 

  44. Weichman, M. L. & Neumark, D. M. Slow photoelectron velocity-map imaging of cryogenically cooled anions. Annu. Rev. Phys. Chem. 69, 101–124 (2018).

    Article  CAS  Google Scholar 

  45. Even, U., Jortner, J., Noy, D., Lavie, N. & Cossart-Magos, C. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112, 8068–8071 (2000).

    Article  CAS  Google Scholar 

  46. Kim, J. B., Hock, C., Yacovitch, T. I. & Neumark, D. M. Slow photoelectron velocity-map imaging spectroscopy of cold thiozonide (S3). J. Phys. Chem. A 117, 8126–8131 (2013).

    Article  CAS  Google Scholar 

  47. Wiley, W. C. & Mclaren, I. H. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150–1157 (1955).

    Article  CAS  Google Scholar 

  48. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  49. Chandler, D. W. & Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    Article  CAS  Google Scholar 

  50. Suits, A. G. Invited review article: photofragment imaging. Rev. Sci. Instrum. 89, 111101 (2018).

    Article  Google Scholar 

  51. Hansen, E. W. & Law, P. L. Recursive methods for computing the Abel transform and its inverse. J. Opt. Sci. Am. A 2, 510–520 (1985).

    Article  Google Scholar 

  52. Blondel, C., Delsart, C. & Goldfarb, F. Electron spectrometry at the µeV level and the electron affinities of Si and F. J. Phys. B At. Mol. Opt. Phys. 34, L281–L288 (2001).

    Article  CAS  Google Scholar 

  53. Guo, H. A time-independent theory of photodissociation based on polynomial propagation. J. Chem. Phys. 108, 2466 (1998).

    Article  CAS  Google Scholar 

  54. Knizia, G., Adler, T. B. & Werner, H. J. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130, 054104 (2009).

    Article  Google Scholar 

  55. Kendall, R. A., Dunning, T. H. & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    Article  CAS  Google Scholar 

  56. Shao, K. J., Chen, J., Zhao, Z. Q. & Zhang, D. H. Communication: fitting potential energy surfaces with fundamental invariant neural network. J. Chem. Phys. 145, 071101 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Air Force Office of Scientific Research for support via grants nos. FA9550-19-1-0051 (D.M.N.) and FA9550-22-1-0350 (H.G.). We also thank the National Natural Science Foundation of China for support under grants nos. 21973109 and 21921004 (H.S.). M.C.B. thanks the Army Research Office for a National Defense Science and Engineering Graduate fellowship. J.A.L. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.C.B., M.D. and J.A.L. performed analysis of the data collected by M.L.W. and J.B.K., with support from D.M.N. All calculations were performed and analysed by H.S. with assistance from H.G. The paper was written by M.C.B. and H.S. with assistance from H.G. and D.M.N.

Corresponding authors

Correspondence to Hongwei Song or Daniel M. Neumark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Gabor Czako, Xueming Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–4, Tables 1–3 and references.

Source data

Source Data Fig. 1

Theoretical data of neutral reactive potential energy surface.

Source Data Fig. 2

Experimental and theoretical photoelectron spectra of the title reaction.

Source Data Fig. 3

Computed anion and resonance wavefunctions as well as reactive potential energy surface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babin, M.C., DeWitt, M., Lau, J.A. et al. Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy. Nat. Chem. 15, 194–199 (2023). https://doi.org/10.1038/s41557-022-01100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01100-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing