Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surfactant-free single-layer graphene in water

Abstract

Dispersing graphite in water to obtain true (single-layer) graphene in bulk quantity in a liquid has been an unreachable goal for materials scientists in the past decade. Similarly, a diagnostic tool to identify solubilized graphene in situ has been long awaited. Here we show that homogeneous stable dispersions of single-layer graphene (SLG) in water can be obtained by mixing graphenide (negatively charged graphene) solutions in tetrahydrofuran with degassed water and evaporating the organic solvent. In situ Raman spectroscopy of these aqueous dispersions shows all the expected characteristics of SLG. Transmission electron and atomic force microscopies on deposits confirm the single-layer character. The resulting additive-free stable water dispersions contain 400 m2 l–1 of developed graphene surface. Films prepared from these dispersions exhibit a conductivity of up to 32 kS m–1.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Preparation of SLGiw.
Figure 2: Raman spectroscopy of SLGiw.
Figure 3: Characterization of deposits from SLGiw.
Figure 4: Graphene interflake interaction.

References

  1. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2011).

    Google Scholar 

  2. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  Article  Google Scholar 

  3. Tabor, R. F., Wu, C., Grieser, F., Dagastine, R. R. & Chan, D. Y. C. Measurement of the hydrophobic force in a soft matter system. J. Phys. Chem. Lett. 4, 3872–3877 (2013).

    CAS  Article  Google Scholar 

  4. Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  Google Scholar 

  5. Cravotto, G. & Cintas, P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem. Eur. J. 16, 5246–5259 (2010).

    CAS  Article  Google Scholar 

  6. Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    CAS  Article  Google Scholar 

  7. He, P. et al. Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015).

    CAS  Article  Google Scholar 

  8. Ciesielski, A. & Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014).

    CAS  Article  Google Scholar 

  9. Lotya, M., King, P. J., Khan, U., De, S. & Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010).

    CAS  Article  Google Scholar 

  10. Pénicaud, A. & Drummond, C. Deconstructing graphite: graphenide solutions. Acc. Chem. Res. 46, 129–137 (2013).

    Article  Google Scholar 

  11. Milner, E. M. et al. Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering. J. Am. Chem. Soc. 134, 8302–8305 (2012).

    CAS  Article  Google Scholar 

  12. Catheline, A. et al. Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8, 7882 (2012).

    CAS  Article  Google Scholar 

  13. Englert, J. M. et al. Functionalization of graphene by electrophilic alkylation of reduced graphite. Chem. Commun. 48, 5025–5027 (2012).

    CAS  Article  Google Scholar 

  14. Huang, K. et al. Single layer nano graphene platelets derived from graphite nanofibres. Nanoscale 8, 8810–8818 (2016).

    CAS  Article  Google Scholar 

  15. Pashley, R. M. Effect of degassing on the formation and stability of surfactant-free emulsions and fine Teflon dispersions. J. Phys. Chem. B 107, 1714–1720 (2003).

    CAS  Article  Google Scholar 

  16. Carruthers, J. C. The electrophoresis of certain hydrocarbons and their simple derivatives as a function of pH. Trans. Faraday Soc. 34, 300–307 (1938).

    CAS  Article  Google Scholar 

  17. Zimmermann, R., Freudenberg, U., Schweiß, R., Küttner, D. & Werner, C. Hydroxide and hydronium ion adsorption—a survey. Curr. Opin. Colloid Interface Sci. 15, 196–202 (2010).

    CAS  Article  Google Scholar 

  18. Siretanu, I., Chapel, J.-P., Bastos-González, D. & Drummond, C. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces. J. Phys. Chem. B 117, 6814–6822 (2013).

    CAS  Article  Google Scholar 

  19. Noah-Vanhoucke, J. & Geissler, P. L. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. Proc. Natl Acad. Sci. USA 106, 15125–15130 (2009).

    CAS  Article  Google Scholar 

  20. Kudin, K. N. & Car, R. Why are water–hydrophobic interfaces charged? J. Am. Chem. Soc. 130, 3915–3919 (2008).

    CAS  Article  Google Scholar 

  21. Gray-Weale, A. & Beattie, J. K. An explanation for the charge on water's surface. Phys. Chem. Chem. Phys. 11, 10994–11005 (2009).

    CAS  Article  Google Scholar 

  22. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 8, 235–246 (2013).

    CAS  Article  Google Scholar 

  23. Malard, L. M. M., Pimenta, M. A. A., Dresselhaus, G. & Dresselhaus, M. S. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    CAS  Article  Google Scholar 

  24. Wang, Y. Y. et al. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637–10640 (2008).

    CAS  Article  Google Scholar 

  25. Berciaud, S., Ryu, S., Brus, L. E. & Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346–352 (2009).

    CAS  Article  Google Scholar 

  26. Ma, X., Zachariah, M. R. & Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012).

    CAS  Article  Google Scholar 

  27. Considine, R. F., Hayes, R. A. & Horn, R. G. Forces measured between latex spheres in aqueous electrolyte: non-DLVO behavior and sensitivity to dissolved gas. Langmuir 15, 1657–1659 (1999).

    CAS  Article  Google Scholar 

  28. Meyer, E. E., Rosenberg, K. J. & Israelachvili, J. Recent progress in understanding hydrophobic interactions. Proc. Natl Acad. Sci. USA 103, 15739–15746 (2006).

    CAS  Article  Google Scholar 

  29. Parsegian, V. A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  30. Kovtyukhova, N. I. et al. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 6, 957–963 (2014).

    CAS  Article  Google Scholar 

  31. Mary, R., Brown, G., Beecher, S. & Torrisi, F. 1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. Opt. Express 21, 7943–7950 (2013).

    CAS  Article  Google Scholar 

  32. Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  Google Scholar 

  33. Schäfer, R. A. et al. On the way to graphane-pronounced fluorescence of polyhydrogenated graphene. Angew. Chem. Int. Ed. 52, 754–757 (2013).

    Article  Google Scholar 

  34. Zhao, J., Pei, S., Ren, W., Gao, L. & Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4, 5245–5252 (2010).

    CAS  Article  Google Scholar 

  35. Nixon, D. E. & Parry, G. S. Formation and structure of the potassium graphites. J. Phys. D 1, 291–298 (1968).

    CAS  Article  Google Scholar 

  36. Hunter, R. J. Foundations of Colloid Science (Oxford Univ. Press, 2001).

    Google Scholar 

  37. Stinchcombe, J., Penicaud, A., Bhyrappa, P., Boyd, P. D. W. & Reed, C. A. Buckminsterfulleride(1–) salts: synthesis, EPR, and the Jahn–Teller distortion of C60. J. Am. Chem. Soc. 115, 5212–5217 (1993).

    CAS  Article  Google Scholar 

  38. Kravets, V. G. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 1–6 (2010).

    Google Scholar 

Download references

Acknowledgements

Support from the Agence Nationale de la Recherche (GRAAL) and the Linde Corporation is acknowledged. A.P. thanks Nacional de Grafite (Brazil) for a gift of natural graphite. This work was carried out within the framework of GDR-I 3217 ‘graphene and nanotubes’.

Author information

Authors and Affiliations

Authors

Contributions

G.B. prepared and characterized SLGiw. K.H. and C.D. recorded the AFM images. L.O. and V.M. made the TEM analysis. G.B., E.A., A.P. and C.D. planned the experiments, analysed the experimental data and wrote the manuscript.

Corresponding authors

Correspondence to Alain Pénicaud or Carlos Drummond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6899 kb)

Supplementary movie

Supplementary movie 1 (MOV 32306 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bepete, G., Anglaret, E., Ortolani, L. et al. Surfactant-free single-layer graphene in water. Nature Chem 9, 347–352 (2017). https://doi.org/10.1038/nchem.2669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2669

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing