Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions

Abstract

Pentoses and hexoses contain more than three oxygen-bearing stereocentres and are ideal starting materials for the synthesis of multiply oxygenated natural products such as sagittamide D, maitotoxin and hikizimycin. Here we demonstrate new radical–radical homocoupling reactions of sugar derivatives with minimal perturbation of their chiral centres. The radical exchange procedure using Et3B/O2 converted sugar-derived α-alkoxyacyl tellurides into α-alkoxy radicals via decarbonylation and rapidly dimerized the monomeric radicals. The robustness of this process was demonstrated by a single-step preparation of 12 stereochemically diverse dimers with 6–10 secondary hydroxy groups, including the C5–C10 stereohexad of sagittamide D and the enantiomer of the C51–C60 stereodecad of maitotoxin. Furthermore, the optimally convergent radical–radical cross-coupling reaction achieved a one-step assembly of the protected C1–C11 oxygenated carbon chain of the anthelmintic hikizimycin. These exceptionally efficient homo- and heterocoupling methods together provide a powerful strategy for the expedited total synthesis of contiguously hydroxylated natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative examples of multiply oxygenated natural products and retrosynthetic analysis of hikizimycin.
Figure 2: Radical–radical coupling strategies for the synthesis of contiguously substituted polyol structures.
Figure 3: Structures of the four D-sugars used in this study and their carboxylic acid derivatives 3a3j, and synthesis of 3k and 3l from 4 and 7.
Figure 4: Presumed conformations of the representative α-alkoxy radicals.
Figure 5: Radical–radical cross-coupling reaction for the synthesis of the hikizimycin carbon chain 9-SS.

Similar content being viewed by others

References

  1. Butler, M. S., Robertson, A. A. B. & Cooper, M. A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 31, 1612–1661 (2014).

    Article  CAS  Google Scholar 

  2. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug. Discov. 14, 111–129 (2015).

    Article  CAS  Google Scholar 

  3. Rodrigues, T., Reker, D., Schneider, P. & Schneider, G. Counting on natural products for drug design. Nat. Chem. 8, 531–541 (2016).

    Article  CAS  Google Scholar 

  4. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  Google Scholar 

  5. Lievens, S. C., Morinaka, B. I. & Molinski, T. F. Stereochemical elucidation of new sagittamides C–F from a didemnid ascidian. Aust. J. Chem. 63, 935–941 (2010).

    Article  CAS  Google Scholar 

  6. Murata, M., Naoki, H., Matsunaga, S., Satake, M. & Yasumoto, T. Structure and partial stereochemical assignments for maitotoxin, the most toxic and largest natural non-biopolymer. J. Am. Chem. Soc. 116, 7098–7107 (1994).

    Article  CAS  Google Scholar 

  7. Das, B. C., Defaye, J. & Uchida, K. The structure of hikizimycin. Part 1. Identification of 3-amino-3-deoxy-D-glucose and cytosine as structural components. Carbohydr. Res. 22, 293–299 (1972).

    Article  CAS  Google Scholar 

  8. Uchida, K. & Das, B. C. Hikosamine, a novel C11 aminosugar component of the antibiotic hikizimycin. Biochimie 55, 635–636 (1973).

    Article  CAS  Google Scholar 

  9. Vuilhorgne, M. et al. Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. 54. Structure analysis of the nucleoside disaccharide antibiotic anthelmycin by carbon-13 nuclear magnetic resonance spectroscopy. A structural revision of hikizimycin and its identity with anthelmycin. J. Org. Chem. 42, 3289–3291 (1977).

    Article  CAS  Google Scholar 

  10. Seike, H., Ghosh, I. & Kishi, Y. Stereochemistry of sagittamide A: prediction and confirmation. Org. Lett. 8, 3865–3868 (2006).

    Article  CAS  Google Scholar 

  11. Nicolaou, K. C. et al. Chemical synthesis of the GHIJKLMNO ring system of maitotoxin. J. Am. Chem. Soc. 130, 7466–7476 (2008).

    Article  CAS  Google Scholar 

  12. Secrist, J. A. & Barnes, K. D. Synthesis of methyl peracetyl α-hikosaminide, the undecose portion of the nucleoside antibiotic hikizimycin. J. Org. Chem. 45, 4526–4528 (1980).

    Article  CAS  Google Scholar 

  13. Danishefsky, S. J. & Maring, C. J. A stereoselective totally synthetic route to methyl α-peracetylhikosaminide. J. Am. Chem. Soc. 111, 2193–2204 (1989).

    Article  CAS  Google Scholar 

  14. Ikemoto, N. & Schreiber, S. L. Total synthesis of (–)-hikizimycin employing the strategy of two-directional chain synthesis. J. Am. Chem. Soc. 114, 2524–2536 (1992).

    Article  CAS  Google Scholar 

  15. Fürstner, A. & Wuchrer, M. Concise approach to the ‘higher sugar’ core of the nucleoside antibiotic hikizimycin. Chem. Eur. J. 12, 76–89 (2006).

    Article  Google Scholar 

  16. Casiraghi, G., Zanardi, F., Rassu, G. & Spanu, P. Stereoselective approaches to bioactive carbohydrates and alkaloids—with a focus on recent syntheses drawing from the chiral pool. Chem. Rev. 95, 1677–1716 (1995).

    Article  CAS  Google Scholar 

  17. Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods (Wiley-VCH, 1996).

    Google Scholar 

  18. Wilson, R. M. & Danishefsky, S. J. Pattern recognition in retrosynthetic analysis: snapshots in total synthesis. J. Org. Chem. 72, 4293–4305 (2007).

    Article  CAS  Google Scholar 

  19. Hanessian, S., Giroux, S. & Merner, B. L. Design and Strategy in Organic Synthesis from the Chiron Approach to Catalysis (Wiley-VCH, 2013).

    Google Scholar 

  20. Northrup, A. B. & MacMillan, D. W. C . Two-step synthesis of carbohydrates by selective aldol reactions. Science 305, 1752–1755 (2004).

    Article  CAS  Google Scholar 

  21. Aljahdali, A. Z., Shi, P., Zhong, Y. & O'Doherty, G. A. De novo asymmetric synthesis of the pyranoses: from monosaccharides to oligosaccharides. Adv. Carbohydr. Chem. Biochem. 69, 55–123 (2013).

    Google Scholar 

  22. Frihed, T. G., Bols, M. & Pedersen, C. M. Synthesis of L-hexoses. Chem. Rev. 115, 3615–3676 (2015).

    Article  CAS  Google Scholar 

  23. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  Google Scholar 

  24. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  Google Scholar 

  25. Weiper, A. & Schäfer, H.-J. Mixed Kolbe electrolyses with sugar carboxylic acids. Angew. Chem. Int. Ed. Engl. 29, 195–197 (1990).

    Article  Google Scholar 

  26. Schäfer, H.-J. Recent contributions of Kolbe electrolysis to organic synthesis. Top. Curr. Chem. 152, 91–151 (1990).

    Article  Google Scholar 

  27. Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).

    Article  CAS  Google Scholar 

  28. Giese, B., Rückert, B., Gröninger, K. S., Muhn, R. & Lindner, H. J. Dimerization of carbohydrate radicals. Liebigs Ann. Chem. 997–1000 (1988).

  29. Doisneau, G. & Beau, J.-M. Radical dimerization of glycosyl 2-pyridylsulfones with samarium(II) iodide in the presence of HMPA. Tetrahedron Lett. 39, 3477–3480 (1998).

    Article  CAS  Google Scholar 

  30. Guerrini, M., Guglieri, S., Santarsiero, R. & Vismara, E. Synthesis and characterisation of hexa- and tetrasaccharide mimics from acetobromomaltotriose and acetobromomaltose, and of C-disaccharide mimics from acetobromoglucose, obtained by electrochemical reduction on silver. Tetrahedron: Asymmetry 16, 243–253 (2005).

    Article  CAS  Google Scholar 

  31. Namy, J. L., Souppe, J. & Kagan, H. B. Efficient formation of pinacols from aldehydes or ketones mediated by samarium diiodide. Tetrahedron Lett. 24, 765–766 (1983).

    Article  CAS  Google Scholar 

  32. Barden, M. C. & Schwartz, J. Stereoselective ‘pinacol’ coupling of 2,3-O-isopropylidene-D-glyceraldehyde. J. Org. Chem. 62, 7520–7521 (1997).

    Article  CAS  Google Scholar 

  33. Ollivier, C. & Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 101, 3415–3434 (2001).

    Article  CAS  Google Scholar 

  34. Nagatomo, M., Nishiyama, H., Fujino, H. & Inoue, M. Decarbonylative radical coupling of α-aminoacyl tellurides: single-step preparation of γ-amino and α,β-diamino acids and rapid synthesis of gabapentin and manzacidin A. Angew. Chem. Int. Ed. 54, 1537–1541 (2015).

    Article  CAS  Google Scholar 

  35. Nagatomo, M., Kamimura, D., Matsui, Y., Masuda, K. & Inoue, M. Et3B-mediated two- and three-component coupling reactions via radical decarbonylation of α-alkoxyacyl tellurides: single-step construction of densely oxygenated carboskeletons. Chem. Sci. 6, 2765–2769 (2015).

    Article  CAS  Google Scholar 

  36. Matsumura, S., Matsui, Y., Nagatomo, M. & Inoue, M. Stereoselective construction of anti- and syn-1,2-diol structures via decarbonylative radical coupling of α-alkoxyacyl tellurides. Tetrahedron 72, 4859–4866 (2016).

    Article  CAS  Google Scholar 

  37. Tel'noi, V. I. & Sheiman, M. S. Thermodynamics of organoselenium and organotellurium compounds. Russ. Chem. Rev. 64, 309–316 (1995).

    Article  Google Scholar 

  38. Boger, D. L. & Mathvink, R. J. Acyl radicals: intermolecular and intramolecular alkene addition reactions. J. Org. Chem. 57, 1429–1443 (1992).

    Article  CAS  Google Scholar 

  39. Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals. Chem. Rev. 99, 1991–2070 (1999).

    Article  CAS  Google Scholar 

  40. De Mico, A., Margarita, R., Parlanti, L., Vescovi, A. & Piancatelli, G. A versatile and highly selective hypervalent iodine(III)/2,2,6,6-tetramethyl-1-piperidinyloxyl-mediated oxidation of alcohols to carbonyl compounds. J. Org. Chem. 62, 6974–6977 (1997).

    Article  CAS  Google Scholar 

  41. Krohn, K. & Börner, G. From sugars to carbocycles. 2. Three- to seven-membered rings from mannose by addition of 1,3-dithiane followed by intramolecular displacement reaction. J. Org. Chem. 59, 6063–6068 (1994).

    Article  CAS  Google Scholar 

  42. Dupuis, J. et al. Conformation of glycosyl radicals: radical stabilization by β-CO bonds. Angew. Chem. Int. Ed. Engl. 23, 896–898 (1984).

    Article  Google Scholar 

  43. Giese, B. The stereoselectivity of intermolecular free radical reactions [new synthetic methods (78)]. Angew. Chem. Int. Ed. Engl. 28, 969–980 (1989).

    Article  Google Scholar 

  44. Rychnovsky, S. D., Powers, J. P. & LePage, T. J. Conformation and reactivity of anomeric radicals. J. Am. Chem. Soc. 114, 8375–8384 (1992).

    Article  CAS  Google Scholar 

  45. Beckwith, A. L. J. & Duggan, P. J. The quasi-homo-anomeric interaction in substituted tetrahydropyranyl radicals: diastereoselectivity. Tetrahedron 54, 6919–6928 (1998).

    Article  CAS  Google Scholar 

  46. Togo, H., He, W., Waki, Y. & Yokoyama, M. C-Glycosidation technology with free radical reactions. Synlett 700–717 (1998).

  47. Praly, J.-P. Structure of anomeric glycosyl radicals and their transformations under reductive conditions. Adv. Carbohydr. Chem. Biochem. 56, 65–151 (2000).

    Article  CAS  Google Scholar 

  48. Abe, H., Shuto, S. & Matsuda, A. Highly α- and β-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation−anomeric effect−stereoselectivity relationship in anomeric radical reactions. J. Am. Chem. Soc. 123, 11870–11882 (2001).

    Article  CAS  Google Scholar 

  49. Urabe, D., Asaba, T. & Inoue, M. Convergent strategies in total syntheses of complex terpenoids. Chem. Rev. 115, 9207–9231 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Funding Program for a Grant-in-Aid for Scientific Research (A) (JSPS Grant no. 26253003) to M.I., and a Grant-in-Aid for Scientific Research (C) (JSPS Grant no. 16K08156) to M.N. A Fellowship from JSPS to K.M. is gratefully acknowledged. We thank D. Kamimura (Kaken Pharmaceutical) for conducting the preliminary experiments for dimerization reactions. This paper is dedicated to Professor Samuel J. Danishefsky on the occasion of his 80th birthday.

Author information

Authors and Affiliations

Authors

Contributions

K.M., M.N. and M.I. conceived and designed the study. K.M. and M.N. performed the syntheses and M.N. and M.I. co-wrote the paper.

Corresponding author

Correspondence to Masayuki Inoue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 13422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, K., Nagatomo, M. & Inoue, M. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nature Chem 9, 207–212 (2017). https://doi.org/10.1038/nchem.2639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing