Abstract

Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC–gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

  2. 2.

    & Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

  3. 3.

    , , & Guided cell patterning on gold–silicon dioxide substrates by surface molecular engineering. Biomaterials 25, 3315–3324 (2004).

  4. 4.

    , , & An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

  5. 5.

    , & Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

  6. 6.

    & Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

  7. 7.

    & N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev. 40, 5151–5169 (2011).

  8. 8.

    , & Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemist's perspective. Angew. Chem. Int. Ed. 46, 2768–2813 (2007).

  9. 9.

    , , & N-heterocyclic carbenes in asymmetric hydrogenation. ACS Catal. 6, 5978–5988 (2016).

  10. 10.

    , , , & Understanding the M(NHC) (NHC = N-heterocyclic carbene) bond. Coord. Chem. Rev. 253, 687–703 (2009).

  11. 11.

    , & [(NHC)Au(I)]-catalyzed acid-free alkyne hydration at part-per-million catalyst loadings. J. Am. Chem. Soc. 131, 448–449 (2009).

  12. 12.

    et al. NHC-based self-assembled monolayers on solid gold substrates. Aust. J. Chem. 64, 1177–1179 (2011).

  13. 13.

    , , & Addressable carbene anchors for gold surfaces. J. Am. Chem. Soc. 135, 7418–7421 (2013).

  14. 14.

    et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

  15. 15.

    et al. On-surface azide–alkyne cycloaddition on Au(111). ACS Nano 7, 8509–8515 (2013).

  16. 16.

    et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

  17. 17.

    et al. Surfactant directed growth of gold metal nanoplates by chemical vapor deposition. Chem. Mater. 27, 6116–6124 (2015).

  18. 18.

    & Articles and methods comprising persistent carbenes and related compositions. WO Patent WO2014160471A2 (2014).

  19. 19.

    , , , & Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J. Am. Chem. Soc. 129, 12834–12846 (2007).

  20. 20.

    , , , & Surface-mounted molecular rotors with variable functional groups and rotation radii. Nano Lett. 9, 4387–4391 (2009).

  21. 21.

    , , & Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 (1990).

  22. 22.

    , & Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Phys. Rev. B 44, 10354–10357 (1991).

  23. 23.

    et al. Site- and configuration-selective anchoring of iron–phthalocyanine on the step edges of Au(111) surface. J. Phys. Chem. C 115, 10791–10796 (2011).

  24. 24.

    , , , & Self-assembly of 1-nitronaphthalene on Au(111). Surf. Sci. 444, 199–210 (2000).

  25. 25.

    et al. Impact of heterocirculene molecular symmetry upon two-dimensional crystallization. Sci. Rep. 4, 5415 (2014).

  26. 26.

    et al. Surface supported gold–organic hybrids: on-surface synthesis and surface directed orientation. Small 10, 1361–1368 (2014).

  27. 27.

    et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 8, 46–51 (2013).

  28. 28.

    et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).

  29. 29.

    & Development of a robot balancing on a ball. in Int. Conf. Control, Automation and Systems 433–438 (IEEE, 2008).

  30. 30.

    , & Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006).

  31. 31.

    et al. Constructing an array of anchored single-molecule rotors on gold surfaces. Phys. Rev. Lett. 101, 197209 (2008).

  32. 32.

    , & Electric conductance of a mechanically strained molecular junction from first principles: crucial role of structural relaxation and conformation sampling. Phys. Rev. B 90, 115440 (2014).

  33. 33.

    et al. Isolation of neutral mono- and dinuclear gold complexes of cyclic (alkyl)(amino)carbenes. Angew. Chem. Int. Ed. 52, 8964–8967 (2013).

  34. 34.

    , , & Coinage metals binding as main group elements: structure and bonding of the carbene complexes [TM(cAAC)2] and [TM(cAAC)2]+ (TM = Cu, Ag, Au). J. Am. Chem. Soc. 136, 17123–17135 (2014).

  35. 35.

    et al. Ultrasmall NHC-coated gold nanoparticles obtained through solvent free thermolysis of organometallic Au(I) complexes. Dalton Trans 43, 15713–15718 (2014).

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG) through the SFB 858 (projects B02 and B15), the Transregional Collaborative Research Center TRR 61 (projects B03 and B07), the Ministry of Science and Technology of China (no. 2013CBA01600), the National Natural Science Foundation of China (no. 61390501), the Leibniz award (F.G.) and the Fonds der Chemischen Industrie (J.B.E.) is gratefully acknowledged. We also thank O. Diaz-Arado and H. Mönig (both Westfälische Wilhelms-Universität) for support with the sample preparation for the XPS measurements.

Author information

Affiliations

  1. Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany

    • Gaoqiang Wang
    • , Saeed Amirjalayer
    • , Marek Knor
    • , Alexander Timmer
    • , Hong-Ying Gao
    •  & Harald Fuchs
  2. Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany

    • Gaoqiang Wang
    • , Saeed Amirjalayer
    • , Marek Knor
    • , Alexander Timmer
    • , Hong-Ying Gao
    •  & Harald Fuchs
  3. Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China

    • Gaoqiang Wang
    •  & Hong-Jun Gao
  4. Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

    • Andreas Rühling
    • , Johannes Bruno Ernst
    • , Christian Richter
    •  & Frank Glorius
  5. Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany

    • Saeed Amirjalayer
    • , Nikos L. Doltsinis
    •  & Harald Fuchs
  6. Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany

    • Nikos L. Doltsinis

Authors

  1. Search for Gaoqiang Wang in:

  2. Search for Andreas Rühling in:

  3. Search for Saeed Amirjalayer in:

  4. Search for Marek Knor in:

  5. Search for Johannes Bruno Ernst in:

  6. Search for Christian Richter in:

  7. Search for Hong-Jun Gao in:

  8. Search for Alexander Timmer in:

  9. Search for Hong-Ying Gao in:

  10. Search for Nikos L. Doltsinis in:

  11. Search for Frank Glorius in:

  12. Search for Harald Fuchs in:

Contributions

F.G. and H.F. initiated the project. F.G., H.F., G.W., A.R., S.A., N.D., M.K., J.B.E. and H.-Y.G. designed the experiments and coordinated the study. A.R., J.B.E. and C.R. synthesized the molecules. G.W. and M.K. performed the STM measurements. S.A. and N.D. performed DFT calculations. F.G., H.F., G.W., A.R., S.A., N.D., M.K., J.B.E., H.-J.G., H.-Y.G. and C.R. interpreted data. A.T. did the XPS experiments. H.F. and F.G. wrote the manuscript together with G.W., A.R., S.A. and N.D. All the authors read and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Frank Glorius or Harald Fuchs.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary Movie 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.2622

Further reading