Perspective | Published:

Metal-catalysed 1,2-diamination reactions

Nature Chemistry volume 1, pages 269275 (2009) | Download Citation

Subjects

Abstract

The 1,2-diamine motif is present in a number of natural products with interesting biological activity and in many important pharmaceutical agents. Chiral 1,2-diamines are also widely used as the control elements in asymmetric synthesis and catalysis. Such compounds are thus an attractive target for the synthetic chemist. Although the diamination of an alkene seems an obvious route to these structures, far less research has been devoted to it than to the analogous dihydroxylation or aminohydroxylation reactions that are well-established processes in asymmetric synthesis. Here, we examine recent advances in metal-catalysed diamination reactions and their asymmetric variants. Given the prevalence of these structures, it seems likely that they will find extensive application in the construction of natural products and drug molecules in the near future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & The chemistry of vicinal diamines. Angew. Chem. Int. Ed. 37, 2580–2627 (1998).

  2. 2.

    , & Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry. Chem. Biol. Drug Des. 67, 101–114 (2006).

  3. 3.

    , , & Preparation of chiral diamines by the diaza-Cope rearrangement (DCR). Aldrichim. Acta 41, 77–88 (2008).

  4. 4.

    & Complete switch of product selectivity in asymmetric direct aldol reaction with two different chiral organocatalysts from a common chiral source. J. Am. Chem. Soc. 130, 17666–17667 (2008).

  5. 5.

    & (eds) Chiral Diazaligands for Asymmetric Synthesis. Topics in Organometallic Chemistry, Vol. 15 (Springer, 2005).

  6. 6.

    & in Transition Metals for Organic Synthesis Vol. 2 (eds Beller, M. & Bolm, C.) 275–300 (Wiley-VCH, 2004).

  7. 7.

    , & Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

  8. 8.

    & in Transition Metals for Organic Synthesis Vol. 2 (eds Beller, M. & Bolm, C.) 309–326 (Wiley-VCH, 2004).

  9. 9.

    , & The addition of aromatic amines to alkenes in the presence of thallium(III) acetate. Synthesis 504–505 (1974).

  10. 10.

    , & Synthesis of dioxobis(tert-alkylimido)osmium(VIII) and oxotris(tert-alkylimido)osmium(VIII) complexes. Stereospecific vicinal diamination of olefins. J. Am. Chem. Soc. 99, 3420–3426 (1977).

  11. 11.

    Stereospecific palladium-promoted vicinal diamination of olefins. Tetrahedron Lett. 19, 163–166 (1978).

  12. 12.

    , & Mercury(II) oxide/tetrafluoroboric acid—a new reagent in organic synthesis; a convenient diamination of olefins. Synthesis 962–964 (1979).

  13. 13.

    , & A new method for 1,2-diamination of alkenes using cyclopentadienylnitrosylcobalt dimer/NO/LiAlH4. J. Am. Chem. Soc. 102, 5676–5677 (1980).

  14. 14.

    , , & Conversion of alkenes to 1,2-diazides and 1,2-diamines. J. Org. Chem. 50, 3647–3649 (1985).

  15. 15.

    , & Copper(II) acetate promoted intramolecular diamination of unactivated olefins. J. Am. Chem. Soc. 127, 11250–11251 (2005).

  16. 16.

    & Copper(II) carboxylate promoted intramolecular diamination of terminal alkenes: Improved reaction conditions and expanded substrate scope. Org. Lett. 9, 2035–2038 (2007).

  17. 17.

    , , & A novel electrophilic diamination reaction of alkenes. Angew. Chem. Int. Ed. 40, 4277–4280 (2001).

  18. 18.

    , & Electrophilic diamination of alkenes by using FeCl3–PPh3 complex as catalyst. J. Org. Chem. 67, 4777–4781 (2002).

  19. 19.

    , , , & Catalytic diamination of alkenes using N,N-dibromo-p-toluensulfonamide as electrophile and nitriles as nucleophiles. Chem. Biol. Drug Des. 71, 71–77 (2008).

  20. 20.

    , , , & Manganese (IV) oxide-catalyzed electrophilic diamination of electrondeficient alkenes provides an easy synthesis of α,β-diamino acid and ketone derivatives for peptidomimetic studies. J. Peptide Res. 66, 249–254 (2005).

  21. 21.

    , , & Direct electrophilic diamination of functionalized alkenes without the use of any metal catalysts. J. Org. Chem. 58, 5742–5745 (2003).

  22. 22.

    , , , & N,N-Dichloro-2-nitrobenzensulfonamide as the electrophilic nitrogen source for direct diamination of enones. J. Org. Chem. 68, 8404–8408 (2003).

  23. 23.

    , , & Ritter-type reactions of N-chlorosaccharin: A method for the electrophilic diamination of alkenes. Org. Lett. 5, 3313–3315 (2003).

  24. 24.

    , , & Organocatalysed asymmetric β-amination and multicomponent syn-selective diamination of α,β-unsaturated aldehydes. Chem. Eur. J. 13, 9068–9075 (2007).

  25. 25.

    , , & Palladium(II)-catalysed intramolecular diamination of unfunctionalized alkenes. J. Am. Chem. Soc. 127, 14586–14587 (2005).

  26. 26.

    , & Oxidative diamination of alkenes with ureas as nitrogen sources: mechanistic pathways in the presence of a high oxidation state palladium catalyst. J. Am. Chem. Soc. 130, 763–773 (2008).

  27. 27.

    Advancing palladium-catalyzed C–N bond formation: bisindoline construction from successive amide transfer to internal alkenes. J. Am. Chem. Soc. 129, 14542–14543 (2007).

  28. 28.

    , , & Direct synthesis of bicyclic guanidines through unprecedented palladium(II) catalyzed diamination with copper chloride as oxidant. Chem. Commun. 2334–2336 (2008).

  29. 29.

    et al. Intramolecular diamination of alkenes with palladium(II)/copper(II) bromide and IPy2BF4: The role of halogenated intermediates. Chem. Asian J. 3, 776–788 (2008).

  30. 30.

    , , & Synthesis of diamino carboxylic esters by palladium-catalyzed oxidative intramolecular diaminations of acrylates. Chem. Asian J. 3, 1248–1255 (2008).

  31. 31.

    , , & Exploring the nickel-catalyzed oxidation of alkenes: A diamination by sulphamide transfer. Angew. Chem. Int. Ed. 46, 7125–7127 (2007).

  32. 32.

    , & Pd(II)-catalyzed intermolecular 1,2-diamination of conjugated dienes. J. Am. Chem. Soc. 127, 7308–7309 (2005).

  33. 33.

    , & A facile Pd(0)-catalyzed regio- and stereoselective diamination of conjugated dienes and trienes. J. Am. Chem. Soc. 129, 762–763 (2007).

  34. 34.

    , & Diamination of conjugated dienes and trienes catalyzed by N-heterocyclic carbene–Pd(0) complexes. J. Org. Chem. 72, 7038–7041 (2007).

  35. 35.

    , , & A mild Cu(I)-catalyzed regioselective diamination of conjugated dienes. Org. Lett. 9, 2589–2591 (2007).

  36. 36.

    & Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

  37. 37.

    & C–H Bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

  38. 38.

    Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

  39. 39.

    , , & A Pd(0)-catalyzed diamination of terminal olefins at allylic and homoallylic carbons via formal C–H activation under solvent-free conditions. J. Am. Chem. Soc. 129, 7496–7497 (2007).

  40. 40.

    , & A palladium-catalyzed dehydrogenative diamination of terminal olefins. Angew. Chem. Int. Ed. 47, 8224–8227 (2008).

  41. 41.

    , , & Cu(I)-catalyzed intermolecular diamination of activated terminal olefins. Org. Lett. 9, 4943–4945 (2007).

  42. 42.

    , & Cu(I)-catalyzed cycloguanidination of olefins. Org. Lett. 10, 1087–1090 (2008).

  43. 43.

    , & A Cu(I)-catalyzed C–H α-amination of esters. Direct synthesis of hydantoins. J. Am. Chem. Soc. 130, 7220–7221 (2008).

  44. 44.

    & A first asymmetric diamination of olefins. Synlett 211–214 (2003).

  45. 45.

    , & Diamination of olefins: Synthesis, structures and reactivity of osmaimidazolidines. Chem. Eur. J. 9, 5581–5596 (2003).

  46. 46.

    & Enantioselective catalytic diamination of alkenes with a bisimidoosmium oxidant. Chem. Commun. 2729–2731 (2005).

  47. 47.

    , , , & Enantioselective diamination of alkenes by use of a bisimidoosmium reagent with the aid of a chiral catalyst. Eur. J. Org. Chem. 704–712 (2006).

  48. 48.

    The development of asymmetric diamination of alkenes with imido-osmium reagents. New J. Chem. 29, 1371–1385 (2005).

  49. 49.

    , , & Catalytic asymmetric diamination of conjugated dienes and triene. J. Am. Chem. Soc. 129, 11688–11689 (2007).

  50. 50.

    & Chiral N-heterocyclic carbene-Pd(0)-catalyzed asymmetric diamination of conjugated dienes and triene. J. Org. Chem. 73, 749–751 (2008).

  51. 51.

    , & Catalytic asymmetric allylic and homoallylic diamination of terminal olefins via formal C–H activation. J. Am. Chem. Soc. 130, 8590–8591 (2008).

  52. 52.

    , , & Cu(I)-catalyzed asymmetric diamination of conjugated dienes. Org. Lett. 10, 4231–4234 (2008).

  53. 53.

    et al. The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement. J. Org. Chem. 57, 2768–2771 (1992).

  54. 54.

    , & N-Halocarbamate salts lead to more efficient catalytic asymmetric aminohydroxylation. Angew. Chem. Int. Ed. Engl. 35, 2813–2817 (1996).

Download references

Acknowledgements

Research conducted in the Goti laboratories was supported by the Ministry of Instruction, University and Research, Italy, and Ente Cassa di Risparmio di Firenze, Italy.

Author information

Affiliations

  1. Department of Organic Chemistry “Ugo Schiff”, Laboratory of Design, Synthesis and Study of Biologically Active Heterocycles (HeteroBioLab), University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy.

    • Francesca Cardona
    •  & Andrea Goti

Authors

  1. Search for Francesca Cardona in:

  2. Search for Andrea Goti in:

Contributions

F.C. and A.G. contributed equally to this collaborative writing project.

Corresponding author

Correspondence to Andrea Goti.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nchem.256

Further reading