Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface


A dominant theme within the research on two-dimensional chirality is the sergeant–soldiers principle, wherein a small fraction of chiral molecules (sergeants) is used to skew the handedness of achiral molecules (soldiers) to generate a homochiral surface. Here, we have combined the sergeant–soldiers principle with temperature-dependent molecular self-assembly to unravel a peculiar chiral amplification mechanism at the solution–solid interface in which, depending on the concentration of a sergeant–soldiers solution, the majority handedness of the system can either be amplified or entirely reversed after an annealing step, furnishing a homochiral surface. Two discrete pathways that affect different stages of two-dimensional crystal growth are invoked for rationalizing this phenomenon and we present a set of experiments where the access to each pathway can be precisely controlled. These results demonstrate that a detailed understanding of subtle intermolecular and interfacial interactions can be used to induce drastic changes in the handedness of a supramolecular network.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structures and models for DBA self-assembly.
Figure 2: Summary of the major chiral induction experiments carried out in this study.
Figure 3: Amplification/reversal of the initial majority (CW) handedness on annealing as a function of total concentration.
Figure 4: Enantioselective adsorption of cDBA-OC12(S).
Figure 5: Control over the sergeant–soldiers and host–guest pathways by molecular design.


  1. Wagnière, G. H. On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image (Wiley-VCH, 2007).

    Book  Google Scholar 

  2. Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    Article  CAS  Google Scholar 

  3. Green, M. M. et al. A helical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995).

    Article  CAS  Google Scholar 

  4. Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).

    Article  CAS  Google Scholar 

  5. Ernst, K.-H. Molecular chirality in surface science. Surf. Sci. 613, 1–5 (2013).

    Article  CAS  Google Scholar 

  6. Elemans, J. A. A. W., De Cat, I., Xu, H. & De Feyter, S. Two-dimensional chirality at liquid–solid interfaces. Chem. Soc. Rev. 38, 722–736 (2009).

    Article  CAS  Google Scholar 

  7. Parschau, M., Romer, S. & Ernst, K.-H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    Article  CAS  Google Scholar 

  8. Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem. 1, 409–414 (2009).

    Article  CAS  Google Scholar 

  9. Masini, F. et al. Chiral induction by seeding surface assemblies of chiral switches. J. Am. Chem. Soc. 133, 13910–13913 (2011).

    Article  CAS  Google Scholar 

  10. Fasel, R., Parschau, M. & Ernst, K.-H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    Article  CAS  Google Scholar 

  11. Berg, A. M. & Patrick, D. L. Preparation of chiral surfaces from achiral molecules by controlled symmetry breaking. Angew. Chem. Int. Ed. 44, 1821–1823 (2005).

    Article  CAS  Google Scholar 

  12. Destoop, I. et al. Solvent-induced homochirality in surface-confined low-density nanoporous molecular networks. J. Am. Chem. Soc. 134, 19568–19571 (2012).

    Article  CAS  Google Scholar 

  13. Chen, T., Li, S.-Y., Wang, D., Yao, M. & Wan, L.-J. Remote chiral communication in coadsorber-induced enantioselective 2D supramolecular assembly at a liquid/solid interface. Angew. Chem. Int. Ed. 54, 4309–4314 (2015).

    Article  CAS  Google Scholar 

  14. Nuermaimaiti, A. et al. Chiral induction with chiral conformational switches in the limit of low ‘sergeants to soldiers’ ratio. ACS Nano 8, 8074–8081 (2014).

    Article  CAS  Google Scholar 

  15. Sawa, Y. et al. Shape selection of twist-nematic-elastomer ribbons. Proc. Natl Acad. Sci. USA 108, 6364–6368 (2011).

    Article  CAS  Google Scholar 

  16. Sakurai, S.-i., Okoshi, K., Kumaki, J. & Yashima, E. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite. J. Am. Chem. Soc. 128, 5650–5651 (2006).

    Article  CAS  Google Scholar 

  17. Kumar, M. et al. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. Nature Commun. 5, 5793 (2014).

    Article  CAS  Google Scholar 

  18. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  Google Scholar 

  19. Tahara, K., Lei, S., Adisoejoso, J., De Feyter, S. & Tobe, Y. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. Chem. Commun. 46, 8507–8525 (2010).

    Article  CAS  Google Scholar 

  20. Tahara, K. et al. Control and induction of surface-confined homochiral porous molecular networks. Nature Chem. 3, 714–719 (2011).

    Article  CAS  Google Scholar 

  21. Ghijsens, E. et al. Towards enantioselective adsorption in surface-confined nanoporous systems. Chem. Commun. 51, 4766–4769 (2015).

    Article  CAS  Google Scholar 

  22. Blunt, M. O. et al. Temperature-induced structural phase transitions in a two-dimensional self-assembled network. J. Am. Chem. Soc. 135, 12068–12075 (2013).

    Article  CAS  Google Scholar 

  23. Gutzler, R. et al. Reversible phase transitions in self-assembled monolayers at the liquid–solid interface: temperature-controlled opening and closing of nanopores. J. Am. Chem. Soc. 132, 5084–5090 (2010).

    Article  CAS  Google Scholar 

  24. Yang, Y. & Wang, C. Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy. Curr. Opin. Colloid Interface Sci. 14, 135–147 (2009).

    Article  CAS  Google Scholar 

  25. Xu, L., Miao, X., Zha, B. & Deng, W. Self-assembly polymorphism: solvent-responsive two-dimensional morphologies of 2,7-ditridecyloxy-9-fluorenone by scanning tunneling microscopy. J. Phys. Chem. C 116, 16014–16022 (2012).

    Article  CAS  Google Scholar 

  26. Shen, Y.-T. et al. Switchable ternary nanoporous supramolecular network on photo-regulation. Nano Lett. 11, 3245–3250 (2011).

    Article  CAS  Google Scholar 

  27. Yokoyama, S., Hirose, T. & Matsuda, K. Phototriggered formation and disappearance of surface-confined self-assembly composed of photochromic 2-thienyl-type diarylethene: a cooperative model at the liquid/solid interface. Chem. Commun. 50, 5964–5966 (2014).

    Article  CAS  Google Scholar 

  28. Bellec, A. et al. Solution-growth kinetics and thermodynamics of nanoporous self-assembled molecular monolayers. J. Chem. Phys. 134, 124702–124707 (2011).

    Article  Google Scholar 

  29. Kim, K., Plass, K. E. & Matzger, A. J. Kinetic and thermodynamic forms of a two-dimensional crystal. Langmuir 19, 7149–7152 (2003).

    Article  CAS  Google Scholar 

  30. Lackinger, M., Griessl, S., Kampschulte, L., Jamitzky, F. & Heckl, W. M. Dynamics of grain boundaries in two-dimensional hydrogen-bonded molecular networks. Small 1, 532–539 (2005).

    Article  CAS  Google Scholar 

  31. Kashchiev, D. Nucleation: Basic Theory with Applications (Butterworth-Heinemann, 2000).

    Google Scholar 

  32. Tahara, K. et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).

    Article  CAS  Google Scholar 

Download references


This work is supported by the Fund of Scientific Research-Flanders (FWO), KU Leuven (GOA 11/003), the Belgian Federal Science Policy Office (IAP-7/05) and JSPS KAKENHI grant nos. 10252628 and 26620063. The research leading to these results has also received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 340324. H.C. is an FWO Pegasus Marie Curie Fellow.

Author information

Authors and Affiliations



Y.F., E.G., O.I., H.C. and A.N. acquired the STM data. O.I. performed MM simulations. Y.F., E.G., O.I. and H.C. analysed the STM data. K.T. and Y.T. contributed to the synthesis of the DBA derivatives. O.I., K.S.M., K.T., Y.T and S.D.F. conceived and designed the concepts. O.I., K.S.M., K.T., Y.T. and S.D.F. co-wrote the paper. Y.F. and E.G. contributed equally. All authors contributed to the conception of experiments and discussion of the results and commented on the manuscript.

Corresponding authors

Correspondence to Oleksandr Ivasenko, Kunal S. Mali, Kazukuni Tahara, Yoshito Tobe or Steven De Feyter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3519 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Ghijsens, E., Ivasenko, O. et al. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nature Chem 8, 711–717 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing