Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microscopic origin of chiral shape induction in achiral crystals


In biomineralization, inorganic materials are formed with remarkable control of the shape and morphology. Chirality, as present in the biomolecular world, is therefore also common for biominerals. Biomacromolecules, like proteins and polysaccharides, are in direct contact with the mineral phase and act as modifiers during nucleation and crystal growth. Owing to their homochirality—they exist only as one of two possible mirror-symmetric isomers—their handedness is often transferred into the macroscopic shape of the biomineral crystals, but the way in which handedness is transmitted into achiral materials is not yet understood at the atomic level. By using the submolecular resolution capability of scanning tunnelling microscopy, supported by photoelectron diffraction and density functional theory, we show how the chiral ‘buckybowl’ hemibuckminsterfullerene arranges copper surface atoms in its vicinity into a chiral morphology. We anticipate that such new insight will find its way into materials synthesis techniques.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Initial steps of chiral faceting of Cu(110) by hemifullerene.
Figure 2: Determination of the absolute handedness of hemifullerene molecules.
Figure 3: Structure models for homochiral step edges.
Figure 4: Single M-hemifullerene-(-R)-kink complex.


  1. 1

    Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499–505 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Qiu, S. R. et al. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps. J. Am. Chem. Soc. 127, 9036–9044 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Switzer, J. A., Kothari, H. M., Poizot, P., Nakanishi, S. & Bohannan, E. W. Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490–493 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Schaaff, T. G. & Whetten, R. L. Giant gold–glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Zhao, X. Fabricating homochiral facets on Cu(001) with L-lysine. J. Am. Chem. Soc. 122, 12584–12585 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Abadía, M. et al. Massive surface reshaping mediated by metal–organic complexes. J. Phys. Chem. C 118, 29704–29712 (2014).

    Article  Google Scholar 

  8. 8

    Addadi, L. & Weiner, S. Crystals, asymmetry and life. Nature 411, 753–755 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Bouropoulos, N., Weiner, S. & Addadi, L. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chem. Eur. J. 7, 1881–1888 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Chen, Q. & Richardson, N. V. Surface faceting induced by adsorbates. Prog. Surf. Sci. 73, 59–77 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Coulman, D. J., Wintterlin, J., Behm, R. J. & Ertl, G. Novel mechanism for the formation of chemisorption phases: The (2×1)O–Cu(110) ‘added row’ reconstruction. Phys. Rev. Lett. 64, 1761–1764 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Mann, S., Didymus, J. M., Sanderson, N. P., Heywood, B. R. & Samper, E. J. A. Morphological influence of functionalized and non-functionalized α,ω-dicarboxylates on calcite crystallization. J. Chem. Soc. Faraday Trans. 86, 1873–1880 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Mhatre, B. et al. A window on surface explosions: tartaric acid on Cu(110). J. Phys. Chem. C 117, 7577–7588 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Schunack, M., Lægsgaard, E., Stensgaard, I., Johannsen, I. & Besenbacher, F. A chiral metal surface. Angew. Chem. Int. Ed. 40, 2623–2626 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Karageorgaki, C. & Ernst, K.-H. A metal surface with chiral memory. Chem. Commun. 50, 1814–1816 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Karageorgaki, C., Passerone, D. & Ernst, K.-H. Chiral reconstruction of Cu(110) after adsorption of fumaric acid. Surf. Sci. 629, 75–80 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Roth, C., Parschau, M. & Ernst, K.-H. Chiral reconstruction of a metal surface by adsorption of racemic malic acid. ChemPhysChem. 12, 1572–1577 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Zhao, X., Perry, S. S., Horvath, J. D. & Gellman, A. J. Adsorbate induced kink formation in straight step edges on Cu(533) and Cu(221). Surf. Sci. 563, 217–224 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Petrukhina, M. A., Andreini, K. W., Peng, L. & Scott, L. T. Hemibuckminsterfullerene C30H12: X-ray crystal structures of the parent hydrocarbon and of the two-dimensional organometallic network {[Rh2(O2CCF3)4]3·(C30H12)}. Angew. Chem. Int. Ed. 43, 5477–5481 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Fasel, R. & Aebi, P. X-ray photoelectron diffraction: probing atom positions and molecular orientation at surfaces. Chimia 56, 566–572 (2002).

    Article  Google Scholar 

  21. 21

    Parschau, M. et al. Buckybowls on metal surfaces: symmetry mismatch and enantiomorphism of corannulene on Cu(110). Angew. Chem. Int. Ed. 46, 8258–8261 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Merz, L. et al. Reversible phase transitions in a buckybowl monolayer. Angew. Chem. Int. Ed. 48, 1966–1969 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Molecular recognition at crystal surfaces. Science 253, 637–645 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nature Mater. 2, 367–374 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Hazen, R. M., Filley, T. R. & Goodfriend, G. A. Selective adsorption of L and D amino acids on calcite: implications for biochemical homochirality. Proc. Natl Acad. Sci. USA 98, 5487–5490 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Ahmadi, A., Attard, G., Feliu, J. & Rodes, A. Surface reactivity at chiral platinum surfaces. Langmuir 15, 2420–2424 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Ernst, K.-H. Molecular chirality at surfaces. Phys. Status Solidi B 249, 2057–2088 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Kühnle, A., Linderoth, T. R. & Besenbacher, F. Enantiospecific adsorption of cysteine at chiral kink sites on Au(110)-(1×2). J. Am. Chem. Soc. 128, 1076–1077 (2006).

    Article  Google Scholar 

  29. 29

    Greber, T., Šljivančanin, Ž., Schillinger, R., Wider, J. & Hammer, B. Chiral recognition of organic molecules by atomic kinks on surfaces. Phys. Rev. Lett. 96, 56103–56106 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Rankin, R. B. & Sholl, D. S. First-principles studies of chiral step reconstructions of Cu(100) by adsorbed glycine and alanine. J. Chem. Phys. 124, 074703 (2006).

    Article  Google Scholar 

  31. 31

    Cheong, W. Y. & Gellman, A. J. Energetics of chiral imprinting of Cu(100) by lysine. J. Phys. Chem. C 115, 1031–1035 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Van Hove, M. A. & Somorjai, G. A. A new microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step and kink structures. Surf. Sci. 92, 489–518 (1980).

    CAS  Article  Google Scholar 

  33. 33

    Yun, Y. & Gellman, A. J. Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)R&S surfaces. Angew. Chem. Int. Ed. 52, 3394–3397 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Fleming, C., King, M. & Kadodwala, M. Highly efficient electron beam induced enantioselective surface chemistry. J. Phys. Chem. C 112, 18299–18302 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Easson, L. H. & Stedman, E. Studies on the relationship between chemical constitution and physiological action. Biochemistry 27, 1257–1266 (1933).

    CAS  Article  Google Scholar 

  36. 36

    Hagen, S., Bratcher, M. S., Erickson, M. S., Zimmermann, G. & Scott, L. T. Novel syntheses of three C30H12 bowl-shaped polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 36, 406–408 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Fadley, C. S. in Synchrotron Radiation Research: Advances in Surface Science (ed. Bachrach, R. Z.) 421 (Plenum, 1992).

    Book  Google Scholar 

  38. 38

    Fasel, R. et al. Local structure of c(2×2)-Na on Al(001): experimental evidence for the coexistence of intermixing and on-surface adsorption. Phys. Rev. B 50, 14516–14524 (1994).

    CAS  Article  Google Scholar 

  39. 39

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  42. 42

    Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  43. 43

    Lüder, J., Sanyal, B., Eriksson, O., Puglia, C. & Brena, B. Comparison of van der Waals corrected and sparse-matter density functionals for the metal-free phthalocyanine/gold interface. Phys. Rev. B 89, 045416 (2014).

    Article  Google Scholar 

  44. 44

    Kirkpatrick, S., Gelatt, C. D. Jr & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    CAS  Article  Google Scholar 

  45. 45

    Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    CAS  Article  Google Scholar 

  46. 46

    Kresse, G. & Hafner, J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110). Surf. Sci. 459, 287–302 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Cui, P. et al. Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892 (2012).

    CAS  Article  Google Scholar 

Download references


Financial support from the Swiss National Science Foundation, the National Natural Science Foundation of China (61574170), the US National Science Foundation and the US Department of Energy is gratefully acknowledged. K.P. and W.A.H. acknowledge Engineering and Physical Sciences Research Council support for the UK Car-Parrinello consortium (grant reference EP/K013610/1). K.P. acknowledges a Hungarian Eötvös Fellowship. W.A.H. acknowledges support from the Royal Society London. R.F. thanks A. Müller, C. A. Pignedoli and O. Gröning for the implementation of the multipole expansion algorithms used for the XPD-SSC analysis. We thank A. Tkatchenko for fruitful discussions. The XPD experiments were performed on the SIM beamline at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.

Author information




R.F. and K.-H.E. conceived the experiments. W.X., T.G. and R.F. performed the experiments and data analysis. K.P., Y.Z., E.B. and W.A.H. conducted the theoretical modelling. L.P. and L.T.S. conducted the chemical synthesis. W.X., K.-H.E. and R.F. wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Roman Fasel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5742 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Ernst, KH., Palotas, K. et al. Microscopic origin of chiral shape induction in achiral crystals. Nature Chem 8, 326–330 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing