Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Remote functionalization through alkene isomerization

Abstract

Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of remote functionalization.
Figure 2: General mechanisms for the transition-metal mediated isomerization of olefins.
Figure 3: Selected examples of terminal functionalization of internal olefins.
Figure 4: Selected examples of remote functionalization triggered by hydrometallation.
Figure 5: Selected examples of remote functionalization induced by chain-walking processes and triggered by an initial Heck addition step.
Figure 6: Selected examples of remote construction of new C–C (or C–X) bonds through a metal-mediated 1,3-hydrogen shift.
Figure 7: Transition-metal mediated remote cleavage of C–C bonds.

Similar content being viewed by others

References

  1. Breslow, R. Centenary lecture. Biomimetic chemistry. Chem. Soc. Rev. 1, 553–580 (1972).

    CAS  Google Scholar 

  2. Breslow, R. Biomimetic control of chemical selectivity. Acc. Chem. Res. 13, 170–177 (1980).

    CAS  Google Scholar 

  3. Schwarz, H. Remote functionalization of C-H and C-C bonds by “naked” transition metal ions (Cosi Fan Tutte). Acc. Chem. Res. 22, 282–287 (1989).

    CAS  Google Scholar 

  4. Ntambi, J. M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J. Lipid. Res. 40, 1549–1558 (1999).

    CAS  PubMed  Google Scholar 

  5. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X.-C & et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, Z., Wang, J. & Dong, G. Simple amine-directed meta-selective C–H arylation via Pd/norbornene catalysis. J. Am. Chem. Soc. 137, 5887–5890 (2015).

    CAS  PubMed  Google Scholar 

  8. Hermann, W. A. & Prinz, M. in Applied Homogeneous Catalysis with Organometallic Compounds 2nd edn, 1119–1124 (Wiley-VCH, 2002).

    Google Scholar 

  9. Vilches-Herrera, V., Domke, L. & Börner, A. Isomerization–hydroformylation tandem reactions. ACS Catal. 4, 1706–1724 (2014).

    CAS  Google Scholar 

  10. Mei, T.-S, Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocenters. Nature 508, 340–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Crabtree, H. R. The Organometallic Chemistry of the Transition Metals 5th edn, 229–231 (Wiley-VCH, 2009).

    Google Scholar 

  12. Espinet, P. & Albéniz, A. C. in Current Methods in Inorganic Chemistry Vol. 3, 293–372 (Elsevier Science B. V., 2003).

    Google Scholar 

  13. Ittel, S. D., Johnson, L. K. & Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1203 (2000).

    CAS  PubMed  Google Scholar 

  14. Guan, Z. et al. Chain walking: a new strategy to control polymer topology. Science 283, 2059–2062 (1999).

    CAS  PubMed  Google Scholar 

  15. Wilke, G. et al. Allyl-transition metal systems. Angew. Chem. Int. Ed. Engl. 5, 151–164 (1966).

    CAS  Google Scholar 

  16. Coffey, R. S. The isomerisation of octenes catalysed by phosphine complexes of iridium(III). Tetrahedron Lett. 6, 3809–38111 (1965).

    Google Scholar 

  17. Grotjahn, D. B. Heteroatoms moving protons: synthetic and mechanistic studies of bifunctional organometallic catalysis. Pure Appl. Chem. 82, 635–647 (2010).

    CAS  Google Scholar 

  18. Bair, J. S. et al. Linear-selective hydroarylation of unactivated terminal and internal olefins with trifluoromethyl-substituted arenes. J. Am. Chem. Soc. 136, 13098–13010 (2014).

    CAS  PubMed  Google Scholar 

  19. Tao, J., Sun, F. & Fang, T. Mechanism of alkene isomerization by bifunctional ruthenium catalyst: A theoretical study. J. Organomet. Chem. 698, 1–6 (2012).

    CAS  Google Scholar 

  20. Sen, A. & Lai, T.-W. Catalytic isomerization of alkenes by palladium(II) compounds. An alternative mechanistic view. Inorg. Chem. 20, 4036–4038 (1981).

    CAS  Google Scholar 

  21. Gooßen, L. J., Ohlmann, D. M. & Dierker, M. Silver triflate-catalysed synthesis of γ-lactones from fatty acids. Green Chem. 12, 197–200 (2010).

    Google Scholar 

  22. Fan, J. et al. Palladium catalyzed isomerization of alkenes: a pronounced influence of an o-phenyl hydroxyl group. Org. Biomol. Chem. 7, 3168–31722 (2009).

    CAS  Google Scholar 

  23. Larionov, E., Li, H. & Mazet, C. Well-defined transition metal hydrides in catalytic isomerizations. Chem. Commun. 50, 9816–9826 (2014).

    CAS  Google Scholar 

  24. Cornils, B., Herrmann, W. A. & Rasch, M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angew. Chem. Int. Ed. Engl. 33, 2144–2163 (1994).

    Google Scholar 

  25. Behr, A. et al. Highly selective tandem isomerization–hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis. J. Mol. Catal. A Chem. 206, 179–184 (2003).

    CAS  Google Scholar 

  26. Morrill, T. C. & D'Souza, C. A. Efficient hydride-assisted isomerization of alkenes via rhodium catalysis. Organometallics 22, 1626–1629 (2003).

    CAS  Google Scholar 

  27. Wu, L. et al. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: extending the scope to internal alkenes. J. Am. Chem. Soc. 135, 14306–14312 (2013).

    CAS  PubMed  Google Scholar 

  28. Yuki, Y. et al. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J. Am. Chem. Soc. 135, 17393–17400 (2013).

    CAS  PubMed  Google Scholar 

  29. Pugh, R. I., Drent, E. & Pringle, P. G. Tandem isomerisation–carbonylation catalysis: highly active palladium(II) catalysts for the selective methoxycarbonylation of internal alkenes to linear esters. Chem. Commun. 2001, 1476–1477 (2001).

    Google Scholar 

  30. Jimenez Rodriguez, C. et al. Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene. Chem. Commun. 2004, 1720–1721 (2004).

    Google Scholar 

  31. Moballigh, A. et al. Highly selective hydroaminomethylation of internal alkenes to give linear amines. Chem. Eur. J. 12, 8979–8988 (2006).

    Google Scholar 

  32. Seayad, A. et al. Internal olefins to linear amines. Science 297, 1676–1678 (2002).

    CAS  PubMed  Google Scholar 

  33. Vaultier, M. & Carboni, B. Comprehensive organometallic chemistry II (eds Abel, E. W., Stone, F. G. A. & Wilkinson, G.) (Oxford Press, 1995).

    Google Scholar 

  34. Burgess, K. & Ohlmeyer, M. J. Transition-metal-promoted hydroborations of alkenes, emerging methodology for organic transformations. Chem. Rev. 91, 1179–1191 (1991).

    CAS  Google Scholar 

  35. Pereira, S. & Srebnik, M. A study of hydroboration of alkenes and alkynes with pinacolborane catalyzed by transition metals. Tetrahedron Lett. 37, 3283–3286 (1996).

    CAS  Google Scholar 

  36. Lata, C. J. & Crudden, C. M. Dramatic effect of Lewis acids on the rhodium-catalyzed hydroboration of olefins. J. Am. Chem. Soc. 132, 131–137 (2010).

    CAS  PubMed  Google Scholar 

  37. Evans, D. A., Fu, G. C. & Anderson, B. A. Mechanistic study of the rhodium(I)-catalyzed hydroboration reaction. J. Am. Chem. Soc. 114, 6679–6685 (1992).

    CAS  Google Scholar 

  38. Pereira, S. & Srebnik, M. Transition metal-catalyzed hydroboration of and CCl4 addition to alkenes. J. Am. Chem. Soc. 118, 909–910 (1996).

    CAS  Google Scholar 

  39. Edwards, D. R., Crudden, C. M. & Yam, K. One-pot carbon monoxide-free hydroformylation of internal olefins to terminal aldehydes. Adv. Synth. Catal. 347, 50–54 (2005).

    CAS  Google Scholar 

  40. Yamamoto, Y. et al. Iridium-catalyzed hydroboration of alkenes with pinacolborane. Tetrahedron 60, 10695–10700 (2004).

    CAS  Google Scholar 

  41. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    CAS  PubMed  Google Scholar 

  42. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

    CAS  PubMed  Google Scholar 

  43. Palmer, W. N. et al. High-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α-diimine ligands. ACS Catal. 5, 622–626 (2015).

    CAS  Google Scholar 

  44. Ruddy, A. J. et al. (N-Phosphinoamidinate)cobalt-catalyzed hydroboration: alkene isomerization affords terminal selectivity. Chem. Eur. J. 20, 13918–13922 (2014).

    CAS  PubMed  Google Scholar 

  45. Troegel, D. & Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 255, 1440–1459 (2011).

    CAS  Google Scholar 

  46. Marciniec, B. (ed.) Hydrosilylation. A Comprehensive Review on Recent Advances (Springer, 2009).

    Google Scholar 

  47. Saam, J. C. & Speier, J. L. The addition of silicon hydrides to olefinic double bonds. Part III. The addition to non-terminal olefins in the presence of chloroplatinic acid. J. Am. Chem. Soc. 80, 4104–4106 (1958).

    CAS  Google Scholar 

  48. Atienza, C. C. H. et al. Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formation. J. Am. Chem. Soc. 136, 12108–12118 (2014).

    CAS  PubMed  Google Scholar 

  49. Lipshutz, B. H., Pfeiffer, S. S., Noson, K. & Tomioka, T. in Titanium and Zirconium in Organic Synthesis (ed. Marek, I.) Ch. 4, 110–148 (2002).

    Google Scholar 

  50. Marek, I. Chinkov, N. & Levin, A. A zirconium promenade – an efficient tool in organic synthesis. Synlett 2006, 501–514 (2006).

    Google Scholar 

  51. Annby, U. et al. Hydrozirconation isomerization-reactions of terminally functionalized olefins with zirconocene hydrides and general aspects. Acta Chem. Scand. 47, 425–433 (1993).

    CAS  Google Scholar 

  52. Gibson, T. & Tulich, L. Novel synthesis of long-chain primary alkyl compounds. J. Org. Chem. 46, 1821–1823 (1981).

    CAS  Google Scholar 

  53. Wipf, P. & Jahn, H. Synthetic applications of organochlorozirconocene complexes. Tetrahedron 52, 12853–12910 (1996).

    CAS  Google Scholar 

  54. Wipf, P. & Xu, W. Transmetalation reactions of organozirconocenes: a general, selective, and facile synthesis of ketones from acid chlorides. Synlett 1992, 718–721 (1992).

    Google Scholar 

  55. Wipf, P. & Smitrovich, J. H. Transmetalation reactions of alkylzirconocenes: copper-catalyzed conjugate addition to enones. J. Org. Chem. 56, 6494–6496 (1991).

    CAS  Google Scholar 

  56. Mola, L., Sidera, M. & Fletcher, S. P. Asymmetric remote C–H functionalization: use of internal olefins in tandem hydrometallation–isomerization–asymmetric conjugate addition sequences. Aust. J. Chem. 68, 401–403 (2015).

    CAS  Google Scholar 

  57. Uma, R., Crévisy, C. & Grée, R. Transposition of allylic alcohols into carbonyl compounds mediated by transition metal complexes. Chem. Rev. 103, 27–51 (2003).

    CAS  PubMed  Google Scholar 

  58. Felfödi, K. & Bartók, M. Transformation of organic compounds in the presence of metal complexes. I. Transformations of unsaturated alcohols with metal complex catalysts. J. Organomet. Chem. 297, c37–c40 (1985).

    Google Scholar 

  59. Kisanga, P., Goj, L. A. & Widenhoefer, R. A. Cycloisomerization of functionalized 1, 5- and 1,6-dienes catalyzed by cationic palladium phenanthroline complexes. J. Org. Chem. 66, 635–637 (2001).

    CAS  PubMed  Google Scholar 

  60. Goj, L. A. & Widenhoefer, R. A. Mechanistic studies of the cycloisomerization of dimethyl diallylmalonate catalyzed by a cationic palladium phenanthroline complex. J. Am. Chem. Soc. 123, 11133–11147 (2001).

    CAS  PubMed  Google Scholar 

  61. Larionov, E. et al. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882–16894 (2014).

    CAS  PubMed  Google Scholar 

  62. Kochi, T. et al. Chain-walking strategy for organic synthesis: catalytic cycloisomerization of 1,n-dienes. J. Am. Chem. Soc. 134, 16544–16547 (2012).

    CAS  PubMed  Google Scholar 

  63. Yamamoto, Y. Transition-metal-catalyzed cycloisomerizations of α,ω-dienes. Chem. Rev. 112, 4736–4769 (2012).

    CAS  PubMed  Google Scholar 

  64. Wakamatsu, H. et al. Isomerization reaction of olefin using RuClH(CO)(Ph3)3 . J. Org. Chem. 65, 3966–3970 (2000).

    CAS  PubMed  Google Scholar 

  65. Doi, T. et al. RuHCl(CO)(PPh3)3-catalyzed chemoselective transfer-hydrogenation of enones leading to saturated ketones. Synlett 2006, 721–724 (2006).

    Google Scholar 

  66. Doi, T. et al. An unusual dimerization of primary unsaturated alcohols catalyzed by RuHCl(CO)(PPh3)3 . Chem. Commun. 2006, 1875–1877 (2006).

    Google Scholar 

  67. Fukuyama, T. et al. Ruthenium hydride catalyzed regioselective addition of aldehydes to enones to give 1,3-diketones. Angew. Chem. Int. Ed. 46, 5559–5561 (2007).

    CAS  Google Scholar 

  68. Molpolder, J. B. & Heck, R. F. A palladium-catalyzed arylation of allylic alcohols with aryl halides. J. Org. Chem. 41, 265–272 (1976).

    Google Scholar 

  69. Chalk, A. J. & Magennis, S. A. Palladium-catalyzed vinyl substitution reactions. II. Synthesis of aryl substituted allylic alcohols, aldehydes, and ketones from aryl halides and unsaturated alcohols. J. Org. Chem. 41, 1206–1209 (1976).

    CAS  Google Scholar 

  70. Tamaru, Y., Yamada, Y. & Yoshida, Z.-I. The palladium catalyzed thienylation of allylic alcohols with 2-bromothiophenes and their derivatives. Tetrahedron 35, 329–340 (1979).

    CAS  Google Scholar 

  71. Larock, R. C., Leung, W.-Y. & Stoltz-Dunn, S. Synthesis of aryl-substituted aldehydes and ketones via palladium-catalyzed coupling of aryl halides and non-allylic unsaturated alcohols. Tetrahedron Lett. 30, 6629–6632 (1989).

    CAS  Google Scholar 

  72. Larock, R. C. et al. Synthesis of aryl-substituted allylic amines via palladium-catalyzed coupling of aryl iodides, non-conjugated dienes, and amines. J. Org. Chem. 59, 8107–8114 (1994).

    CAS  Google Scholar 

  73. Larock, R. C., Lu, Y. & Bain, A. C. Palladium-catalyzed coupling of aryl iodides, nonconjugated dienes, and carbon nucleophiles by palladium migration. J. Org. Chem. 56, 4589–4590 (1991).

    CAS  Google Scholar 

  74. Wang, Y., Dong, X. & Larock, R. C. Synthesis of naturally occurring pyridine alkaloids via palladium-catalyzed coupling/migration chemistry. J. Org. Chem. 68, 3090–3098 (2003).

    CAS  PubMed  Google Scholar 

  75. Werner, E. W. et al. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Patel, H. H. & Sigman, M. S. Palladium-catalyzed enantioselective Heck alkenylation of acyclic alkenols using a redox-relay strategy. J. Am. Chem. Soc. 137, 3462–3465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mei, T.-S. et al. Enantioselective redox-relay oxidative Heck arylations of acyclic alkenyl alcohols using boronic acids. J. Am. Chem. Soc. 135, 6830–6833 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dang, Y. et al. A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities. J. Am. Chem. Soc. 136, 986–988 (2014).

    CAS  PubMed  Google Scholar 

  79. Hilton, M. J. et al. Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols. J. Org. Chem. 79, 11841–11850 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, L. et al. Mechanism, reactivity and selectivity in palladium-catalyzed redox-relay Heck arylation of alkenyl alcohols. J. Am. Chem. Soc. 136, 1960–1967 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Grotjahn, D. B. et al. Extensive isomerization of alkenes using a bifunctional catalyst: an alkene zipper. J. Am. Chem. Soc. 129, 9592–9593 (2007).

    CAS  PubMed  Google Scholar 

  82. Erdogan, G. & Grotjahn, D. B. Mild and selective deuteration and isomerization of alkenes by a bifunctional catalyst and deuterium oxide. J. Am. Chem. Soc. 131, 10354–10355 (2009).

    CAS  PubMed  Google Scholar 

  83. Chinkov, N., Levin, A. & Marek, I. Unsaturated fatty alcohol derivatives as a source of substituted allylzirconocene. Angew. Chem. Int. Ed. 45, 465–468 (2006).

    CAS  Google Scholar 

  84. Negishi, E.-I., Cederbaum, F. E. & Takahashi, T. Reaction of zirconocene dichloride with alkyllithiums or alkyl Grignard reagents as a convenient method for generating a “zirconocene” equivalent and its use in zirconium-promoted cyclization of alkenes, alkynes, dienes, enynes, and diynes. Tetrahedon Lett. 27, 2829–2832 (1986).

    CAS  Google Scholar 

  85. Chinkov, N., Majumdar, S. & Marek, I. Stereoselective preparation of dienyl zirconocene complexes via a tandem allylic C–H bond activation-elimination sequence. J. Am. Chem. Soc. 125, 13258–13264 (2003).

    CAS  PubMed  Google Scholar 

  86. Miura, T. et al. Enantioselective synthesis of anti homoallylic alcohols from terminal alkynes and aldehydes based on concomitant use of cationic iridium complex and a chiral phosphoric acid. J. Am. Chem. Soc. 135, 11497–11500 (2013).

    CAS  PubMed  Google Scholar 

  87. Ohlmann, D. M., Gooβen, L. J. & Dierker, M. Regioselective synthesis of β-aryl- and β-amino-substituted aliphatic esters by rhodium-catalyzed tandem double-bond migration/conjugate addition. Chem. Eur. J. 17, 9508–9519 (2011).

    CAS  PubMed  Google Scholar 

  88. Rybtchinski, B. & Milstein, D. Metal insertion into C–C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).

    Google Scholar 

  89. Ruhland, K. Transition-metal-mediated cleavage and activation of C–C single bonds. Eur. J. Org. Chem. 2012, 2683–2706 (2012).

    CAS  Google Scholar 

  90. Marek, I. et al. Selective carbon–carbon bond cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed. 54, 414–429 (2015).

    CAS  Google Scholar 

  91. Porri, L. et al. Catalysts derived from ruthenium and iridium for the ring-opening polymerization of cycloolefins. Makromol. Chem. 176, 3121–3125 (1975).

    CAS  Google Scholar 

  92. France, M. B., Feldman, J. & Grubbs, R. H. An iridium-based catalyst system for metathesis/isomerization of acyclic olefins including methyl oleate. J. Chem. Soc. Chem. Commun. 1994, 1307–1308 (1994).

    Google Scholar 

  93. Consorti, C. S., Aydos, G. L. P. & Dupont, J. Tandem isomerization–metathesis catalytic processes of linear olefins in ionic liquid biphasic system. Chem. Commun. 46, 9058–9060 (2010).

    CAS  Google Scholar 

  94. Ohlmann, D. M. et al. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids. J. Am. Chem. Soc. 134, 13716–13729 (2012).

    CAS  PubMed  Google Scholar 

  95. Dobereiner, G. E. et al. A one-pot tandem olefin isomerization/metathesis-coupling (ISOMET) reaction. ACS Catal. 4, 3069–3076 (2014).

    CAS  Google Scholar 

  96. Baader, S. et al. Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis. Green Chem. 16, 4885–4890 (2014).

    CAS  Google Scholar 

  97. Masarwa, A. et al. Merging allylic C–H activation and selective C–C bond activation. Nature 505, 199–203 (2014).

    CAS  PubMed  Google Scholar 

  98. Vasseur, A. et al. Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chem. Sci. 6, 2770–2776 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council under the Seventh Framework Program of the European Community (ERC grant agreement no 338912). I.M. holds the Sir Michael and Lady Sobell Academic Chair.

Author information

Authors and Affiliations

Authors

Contributions

A.V., J.B. and I.M. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Ilan Marek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nature Chem 8, 209–219 (2016). https://doi.org/10.1038/nchem.2445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing