Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of the leaving group on the dynamics of a gas-phase SN2 reaction

Abstract

In addition to the nucleophile and solvent, the leaving group has a significant influence on SN2 nucleophilic substitution reactions. Its role is frequently discussed with respect to reactivity, but its influence on the reaction dynamics remains unclear. Here, we uncover the influence of the leaving group on the gas-phase dynamics of SN2 reactions in a combined approach of crossed-beam imaging and dynamics simulations. We have studied the reaction F + CH3Cl and compared it to F + CH3I. For the two leaving groups, Cl and I, we find very similar structures and energetics, but the dynamics show qualitatively different features. Simple scaling of the leaving group mass does not explain these differences. Instead, the relevant impact parameters for the reaction mechanisms are found to be crucial and the differences are attributed to the relative orientation of the approaching reactants. This effect occurs on short timescales and may also prevail in solution-phase conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated minimum energy path of reactions (1) and (2) along the reaction pathway.
Figure 2: Differential scattering cross-sections and extracted angular and energy distributions of the SN2 reactions F + CH3Cl and F + CH3I.
Figure 3: Direct rebound fraction for F + CH3Cl in comparison to previously studied systems.
Figure 4: Opacity functions for different reaction mechanisms.

Similar content being viewed by others

References

  1. Vollhardt, K. P. C. & Shore, N. E. Organic Chemistry: Structure and Function (W. H. Freeman, 2005).

    Google Scholar 

  2. Olmstead, W. N. & Brauman, J. I. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99, 4219–4228 (1977).

    Article  CAS  Google Scholar 

  3. Shaik, S. S. The collage of SN2 reactivity patterns—a state correlation diagram model. Prog. Phys. Org. Chem. 15, 197–337 (1985).

    CAS  Google Scholar 

  4. Viggiano, A. A., Morris, R. A., Paschkewitz, J. S. & Paulson, J. F. Kinetics of the gas-phase reactions of chloride anion, Cl with CH3Br and CD3Br: experimental evidence for nonstatistical behavior? J. Am. Chem. Soc. 114, 10477–10482 (1992).

    Article  CAS  Google Scholar 

  5. Hase, W. L. Simulations of gas-phase chemical reactions: applications to SN2 nucleophilic substitution. Science 266, 998–1002 (1994).

    Article  CAS  Google Scholar 

  6. Chabinyc, M. L., Craig, S. L., Regan, C. K. & Brauman, J. I. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements. Science 279, 1882–1886 (1998).

    Article  CAS  Google Scholar 

  7. Laerdahl, J. K. & Uggerud, E. Gas phase nucleophilic substitution. Int. J. Mass Spectrom. Ion Phys. 214, 277–314 (2002).

    Article  CAS  Google Scholar 

  8. Schmatz, S. Quantum dynamics of gas-phase SN2 reactions. ChemPhysChem 5, 600–617 (2004).

    Article  CAS  Google Scholar 

  9. Mikosch, J. et al. Imaging nucleophilic substitution dynamics. Science 319, 183–186 (2008).

    Article  CAS  Google Scholar 

  10. Bento, A. P. & Bickelhaupt, F. M. Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J. Org. Chem. 73, 7290–7299 (2008).

    Article  CAS  Google Scholar 

  11. Garver, J. M., Gronert, S. & Bierbaum, V. M. Experimental validation of the alpha-effect in the gas phase. J. Am. Chem. Soc. 133, 13894–13897 (2011).

    Article  CAS  Google Scholar 

  12. Kretschmer, R., Schlangen, M. & Schwarz, H. Efficient and selective gas-phase monomethylation versus N–H bond activation of ammonia by bare Zn(CH3)+: atomic zinc as a leaving group in an SN2 reaction. Angew. Chem. Int. Ed. 50, 5387–5391 (2011).

    Article  CAS  Google Scholar 

  13. Otto, R. et al. Single solvent molecules can affect the dynamics of substitution reactions. Nature Chem. 4, 534–538 (2012).

    Article  CAS  Google Scholar 

  14. Xie, J. et al. Identification of atomic-level mechanisms for gas-phase X+CH SN2 reactions by combined experiments and simulations. Acc. Chem. Res. 47, 2960–2969 (2014).

    Article  CAS  Google Scholar 

  15. Fernández, I. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43, 4953–4967 (2014).

    Article  Google Scholar 

  16. Szabó, I. & Czakó, G. Revealing a double-inversion mechanism for the F+CH3Cl SN2 reaction. Nature Commun. 6, 5972 (2015).

    Article  Google Scholar 

  17. Thallmair, S., Kowalewski, M., Zauleck, J. P. P., Roos, M. K. & de Vivie-Riedle, R. Quantum dynamics of a photochemical bond cleavage influenced by the solvent environment: a dynamic continuum approach. J. Phys. Chem. Lett. 5, 3480–3485 (2014).

    Article  CAS  Google Scholar 

  18. Orr-Ewing, A. J. Perspective: bimolecular chemical reaction dynamics in liquids. J. Chem. Phys. 140, 090901 (2014).

    Article  Google Scholar 

  19. Garver, J. M. et al. A direct comparison of reactivity and mechanism in the gas phase and in solution. J. Am. Chem. Soc. 132, 3808–3814 (2010).

    Article  CAS  Google Scholar 

  20. Liu, S., Hu, H. & Pedersen, L. G. Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J. Phys. Chem. A 114, 5913–5918 (2010).

    Article  CAS  Google Scholar 

  21. DeTuri, V. F., Hintz, P. A. & Ervin, K. M. Translational activation of the SN2 nucleophilic displacement reactions Cl + CH3Cl (CD3Cl) → ClCH3 (ClCD3) + Cl: a guided ion beam study. J. Phys. Chem. A 101, 5969–5986 (1997).

    Article  CAS  Google Scholar 

  22. Anderson, J. S. M., Liu, Y., Thomson, J. W. & Ayers, P. W. Predicting the quality of leaving groups in organic chemistry: tests against experimental data. J. Mol. Struct. THEOCHEM 943, 168–177 (2010).

    Article  CAS  Google Scholar 

  23. Jaramillo, P., Domingo, L. R. & Pérez, P. Towards an intrinsic nucleofugality scale: the leaving group (LG) ability in CH3LG model system. Chem. Phys. Lett. 420, 95–99 (2006).

    Article  CAS  Google Scholar 

  24. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).

    Article  CAS  Google Scholar 

  25. Mikosch, J. et al. Indirect dynamics in a highly exoergic substitution reaction. J. Am. Chem. Soc. 135, 4250–4259 (2013).

    Article  CAS  Google Scholar 

  26. Sun, R., Davda, C. J., Zhang, J. & Hase, W. L. Comparison of direct dynamics simulations with different electronic structure methods. F + CH3I with MP2 and DFT/B97-1. Phys. Chem. Chem. Phys. 17, 2589–2597 (2015).

    Article  CAS  Google Scholar 

  27. Angel, L. A. & Ervin, K. M. Dynamics of the gas-phase reactions of fluoride ions with chloromethane. J. Phys. Chem. A 105, 4042–4051 (2001).

    Article  CAS  Google Scholar 

  28. Su, T., Wang, H. & Hase, W. L. Trajectory studies of SN2 nucleophilic substitution F + CH3Cl → FCH3 + Cl. J. Phys. Chem. A 102, 9819–9828 (1998).

    Article  CAS  Google Scholar 

  29. Zhang, J. et al. F + CH3I → FCH3 + I Reaction dynamics. nontraditional atomistic mechanisms and formation of a hydrogen-bonded complex. J. Phys. Chem. Lett. 1, 2747–2752 (2010).

    Article  CAS  Google Scholar 

  30. Xie, J. et al. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH + CH3I reaction. Comparison with experiment. J. Phys. Chem. A 117, 7162–7178 (2013).

    Article  CAS  Google Scholar 

  31. Vanorden, S. L., Pope, R. M. & Buckner, S. W. Energy disposal in gas-phase nucleophilic displacement reactions. Org. Mass Spectrom. 26, 1003–1007 (1991).

    Article  CAS  Google Scholar 

  32. Lide, D. R. (ed.) Handbook of Chemistry and Physics (CRC Press, 2003).

    Google Scholar 

  33. Su, T., Morris, R. A., Viggiano, A. A. & Paulson, J. F. Kinetic energy and temperature dependences for the reactions of fluoride with halogenated methanes: experiment and theory. J. Phys. Chem. 94, 8426–8430 (1990).

    Article  CAS  Google Scholar 

  34. Wester, R. Velocity map imaging of ion–molecule reactions. Phys. Chem. Chem. Phys. 16, 396–405 (2014).

    Article  CAS  Google Scholar 

  35. Szabó, I., Császár, A. G. & Czakó, G. Dynamics of the F + CH3Cl → Cl + CH3F SN2 reaction on a chemically accurate potential energy surface. Chem. Sci. 4, 4362 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Austrian Science Fund (FWF), project P 25956-N20. E.C. acknowledges support from a DOC-Fellowship by the Austrian Academy of Sciences (ÖAW). G.C. was supported by the Scientific Research Fund of Hungary (OTKA, PD-111900) and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

M.S., E.C., A.K. and R.W. conceived the experiment. M.S., E.C., A.K. and M.K performed the measurements. M.S. analysed the data. I.S. and G.C. carried out the simulations. All authors discussed the results. A.K, M.S., E.C., J.M., G.C. and R.W. wrote the paper.

Corresponding authors

Correspondence to Gábor Czakó or Roland Wester.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stei, M., Carrascosa, E., Kainz, M. et al. Influence of the leaving group on the dynamics of a gas-phase SN2 reaction. Nature Chem 8, 151–156 (2016). https://doi.org/10.1038/nchem.2400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing