Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diastereoselective addition of Grignard reagents to α-epoxy N-sulfonyl hydrazones

Abstract

The α-alkylation of ketones and their derivatives by the addition of their corresponding enolates to alkyl halides is a fundamental synthetic transformation, but its utility is limited because the key bond-forming step proceeds in a bimolecular nucleophilic substitution fashion. Here we describe how an umpolung strategy that involves the addition of Grignard reagents to α-epoxy N-sulfonyl hydrazones—directed by the alkoxide of the 1-azo-3-alkoxy propenes formed in situ via base-induced ring opening of the epoxide—leads to the syn-selective production of α-alkyl-β-hydroxy N-sulfonyl hydrazones with α-quaternary centres. This transformation is remarkable in its ability to incorporate an unprecedented range of carbon-based substituents, which include primary, secondary and tertiary alkyl, as well as alkenyl, aryl, allenyl and alkynyl groups. Subsequent hydrolysis of the β-hydroxy N-sulfonyl hydrazone products produces the corresponding β-hydroxy ketones. In addition to hydrolysis, the hydrazone products are poised to undergo numerous different known synthetic transformations via well-established chemistry, which would provide access to a wide array of useful structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Routes to α-alkyl ketones and derivatives, and the Eschenmoser–Tanabe fragmentation.
Figure 2

Similar content being viewed by others

References

  1. Heathcock, C. H. in Modern Synthetic Methods Vol. 6 (ed. Scheffold, R.) 1–102 (Helvetica Chimica Acta, 1992).

    Google Scholar 

  2. Rizzacasa, M. A. & Perkins, M. Stoichiometric Asymmetric Synthesis (Sheffield Academic Press, 2000).

    Google Scholar 

  3. Mekelburger, H. B. & Wilcox, C. S. in Comprehensive Organic Synthesis Vol. 2 (eds Trost, B. M. & Fleming, I.) 99–131 (Pergamon Press, 1991).

    Book  Google Scholar 

  4. Evans, D. A. in Asymmetric Synthesis Vol. 3 (ed. Morrison, J. D.) 1–110 (Academic Press, 1984).

    Book  Google Scholar 

  5. McSweeney, C. M., Foley, V. M. & McGlacken, G. P. The asymmetric alkylation of dimethylhydrazones; intermolecular chirality transfer using sparteine as chiral ligand. Chem. Commun. 50, 14817–14819 (2014).

    Article  CAS  Google Scholar 

  6. Wengryniuk, S. E., Lim, D. & Coltart, D. M. Regioselective asymmetric α,α-bisalkylation of ketones via complex-induced syn-deprotonation of chiral N-amino cyclic carbamate hydrazones. J. Am. Chem. Soc. 133, 8741–8720 (2011).

    Article  Google Scholar 

  7. Krenske, E. H., Houk, K. N., Lim, D., Wengryniuk, S. E. & Coltart, D. M. Origins of stereoselectivity in the α-alkylation of chiral hydrazones. J. Org. Chem. 75, 8578–8584 (2010).

    Article  CAS  Google Scholar 

  8. Lim, D. & Coltart, D. M. Simple and efficient asymmetric α-alkylation and α,α-bisalkylation of acyclic ketones by using chiral N-amino cyclic carbamate hydrazones. Angew. Chem. Int. Ed. 47, 5207–5210 (2008).

    Article  CAS  Google Scholar 

  9. Enders, D., Eichenauer, H., Baus, U., Schubert, H. & Kremer, K. A. M. Asymmetric syntheses via metalated chiral hydrazones: overall enantioselective α-alkylation of acyclic ketones. Tetrahedron 40, 1345–1359 (1984).

    Article  CAS  Google Scholar 

  10. Enders, D. Asymmetric Synthesis 1st edn, Vol. 3 (ed. Morrison, J. D.) 275–339 (Academic Press, 1984).

    Book  Google Scholar 

  11. Job, A., Janeck, C. F., Bettray, W., Peters, R. & Enders, D. The SAMP-/RAMP-hydrazone methodology in asymmetric synthesis. Tetrahedron 58, 2253–2329 (2002).

    Article  CAS  Google Scholar 

  12. Meyers, A. I., Williams, D. R. & Druelinger, M. Enantioselective alkylation of cyclohexanone via chiral lithio-chelated enamines. J. Am. Chem. Soc. 98, 3032–3033 (1976).

    Article  CAS  Google Scholar 

  13. Meyers, A. I. & Williams, D. R. Asymmetric alkylation of acyclic ketones via chiral metallo enamines. effect of kinetic vs. thermodynamic metalations. J. Org. Chem. 43, 3245–3247 (1978).

    Article  CAS  Google Scholar 

  14. Meyers, A. I., Williams, D. R., Erickson, G. W., White, S. & Druelinger, M. Enantioselective alkylation of ketones via chiral, nonracemic lithioenamines. An asymmetric synthesis of α-alkyl and α,α′-dialkyl cyclic ketones. J. Am. Chem. Soc. 103, 3081–3087 (1981).

    Article  CAS  Google Scholar 

  15. Hashimoto, S. & Koga, K. Asymmetric synthesis of α-alkylated cyclic ketones via chiral chelated lithioenamines. Tetrahedron Lett. 573–576 (1978).

  16. Hashimoto, S. & Koga, K. Stereoselective reactions 3. Highly efficient method for the asymmetric synthesis of 2-alkylcycloalkanones via chiral chelated lithioenamines. Chem. Pharm. Bull. 27, 2760–2766 (1979).

    Article  CAS  Google Scholar 

  17. Seebach, D., Jaeschke, G., Pichota, A. & Audergon, L. Enantioselective 1,4-addition of aliphatic Grignard reagents to enones catalyzed by readily available copper(I) thiolates derived from TADDOL. Preliminary communication. Helv. Chim. Acta 80, 2515–2519 (1997).

    Article  CAS  Google Scholar 

  18. Silverman, G. S. in Handbook of Grignard Reagents (eds Silverman, G. S. & Rakita, P. E.) 9–21 (Marcel Dekker, Inc., 1996).

    Book  Google Scholar 

  19. Corey, E. J. & Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew. Chem. Int. Ed. 37, 388–401 (1998).

    Article  Google Scholar 

  20. Sacks, C. E. & Fuchs, P. L. Carbonyl regeneration from p-toluenesulfonylhydrazones (tosylhydrazones). Synthesis 456–457 (1976).

  21. Adlington, R. M. & Barrett, A. G. M. Recent applications of the Shapiro reaction. Acc. Chem. Res. 16, 55–59 (1983).

    Article  CAS  Google Scholar 

  22. Xiao, Q., Ma, J., Yang, Y., Zhang, Y. & Wang, J. Star-shaped D-π-A conjugated molecules: synthesis and broad absorption bands. Org. Lett. 11, 4732–4735 (2009).

    Article  CAS  Google Scholar 

  23. Barluenga, J., Tomas-Gamasa, M., Aznar, F. & Valdes, C. Metal-free carbon–carbon bond-forming reductive coupling between boronic acids and tosylhydrazones. Nature Chem. 1, 494–499 (2009).

    Article  CAS  Google Scholar 

  24. Attanasi, O. A. et al. Cultivating the passion to build heterocycles from 1,2-diaza-1,3-dienes: the force of imagination. Eur. J. Org. Chem. 3109–3127 (2009).

    Article  Google Scholar 

  25. Attanasi, O. A. & Filippone, P. Working twenty years on conjugated azo-alkenes (and environs) to find new entries in organic synthesis. Synlett 1128–1140 (1997).

  26. Hatcher, J. M., Kohler, M. C. & Coltart, D. M. Catalytic asymmetric addition of thiols to nitrosoalkenes leading to chiral non-racemic α-sulfenyl ketones. Org. Lett. 13, 3810–3813 (2011).

    Article  CAS  Google Scholar 

  27. Hatcher, J. M. & Coltart, D. M. Copper(I)-catalyzed addition of Grignard reagents to in situ-derived N-sulfonyl azoalkenes: an umpolung alkylation procedure applicable to the formation of up to three contiguous quaternary centers. J. Am. Chem. Soc. 132, 4546–4547 (2010).

    Article  CAS  Google Scholar 

  28. Eschenmoser, A., Felix, D. & Ohloff, G. New fragmentation reaction of α,β-unsaturated carbonyls. Synthesis of exaltone and rac-muscane from cyclododecanone. Helv. Chim. Acta 50, 708–713 (1967).

    Article  CAS  Google Scholar 

  29. Tanabe, M., Crowe, D. F. & Dehn, R. L. Novel fragmentation reaction of α,β-epoxyketones. Synthesis of acetylenic ketones. Tetrahedron Lett. 3943–3946 (1967).

  30. Weyerstahl, P. & Marschall, H. in Comprehensive Organic Synthesis Vol. 6 (eds Trost, B. M. & Fleming, I.) 1041–1070 (Pergamon Press, 1991).

    Book  Google Scholar 

  31. Hoang, T. T., Dudley, G. B. & Williams, L. J. in Comprehensive Organic Synthesis 2nd edn, Vol. 6 (eds Molander, G. & Knochel, P.) 842–860 (Elsevier, 2014).

    Google Scholar 

  32. Fuchs, P. L. α-Arylation of α,β-unsaturated ketones: utilization of the α-epoxytosylhydrazone functional group as a D2-enonium synthon. J. Org. Chem. 41, 2935–2937 (1976).

    Article  CAS  Google Scholar 

  33. Corey, E. J., Lawrence, S. M. Jr & Martin, F. H. A novel α-alkylation of α,β-epoxy ketones. Tetrahedron Lett. 16, 3117–3120 (1975).

    Article  Google Scholar 

  34. Stork, G. & Ponaras, A. A. α-Alkylation and arylation of α,β-unsaturated ketones. J. Org. Chem. 41, 2937–2139 (1976).

    Article  CAS  Google Scholar 

  35. Swada, D. & Shibasaki, M . Enantioselective total synthesis of epothilone A using multifunctional asymmetric catalyses. Angew. Chem. Int. Ed. 39, 209–213 (2000).

    Article  Google Scholar 

  36. Kosar, W . in Handbook of Grignard Reagents (eds Silverman, G. S. & Rakita, P. E.) 441–453 (Marcel Dekker 1996).

    Book  Google Scholar 

  37. Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. Beyond thermodynamic acidity: a perspective on the complex-induced proximity effect (CIPE) in deprotonation reactions. Angew. Chem. Int. Ed. 43, 2206–2225 (2004).

    Article  CAS  Google Scholar 

  38. El-Awa, A., Noshi, M. N., Mollat du Jourdin, X. & Fuchs, P. L. Evolving organic synthesis fostered by the pluripotent phenylsulfone moiety. Chem. Rev. 109, 2315–2349 (2009).

    Article  CAS  Google Scholar 

  39. Bougauchi, M., Watanabe, S., Arai, T., Sasai, H. & Shibasaki, M. Catalytic asymmetric epoxidation of α,β-unsaturated ketones promoted by lanthanoid complexes. J. Am. Chem. Soc. 119, 2329–2330 (1997).

    Article  CAS  Google Scholar 

  40. Watanabe, S. et al. Water vs. desiccant. Improvement of Yb-BINOL complex catalyzed enantioselective epoxidation of enones. Tetrahedron Lett. 39, 7353–7356 (1998).

    Article  CAS  Google Scholar 

  41. Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. The first catalytic enantioselective synthesis of cis-epoxyketones from cis-enones. J. Org. Chem. 63, 8090–8091 (1998).

    Article  CAS  Google Scholar 

  42. Daikai, K., Kamaura, M. & Inanaga, J. Remarkable ligand effect on the enantioselectivity of the chiral lanthanum complex-catalyzed asymmetric epoxidation of enones. Tetrahedron Lett. 39, 7321–7322 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. M. Hatcher for conducting the preliminary experiments related to this work. We also thank J. Korp (University of Houston) for the X-ray structure determination and the National Sciences Foundation (NSF 1012287) and Welch Foundation (E-0806) for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments and analysed the data. M.M.U. and T.T.N. performed the experiments. D.M.C. wrote the paper.

Corresponding author

Correspondence to Don M. Coltart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 17344 kb)

Supplementary information

Crystallographic data for compound 14 (CIF 16 kb)

Supplementary information

Structure factors file for compound 14 (CIF 148 kb)

Supplementary information

Crystallographic data for compound 17 (CIF 17 kb)

Supplementary information

Structure factors file for compound 17 (CIF 155 kb)

Supplementary information

Crystallographic data for compound 22 (CIF 21 kb)

Supplementary information

Structure factors file for compound 22 (CIF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uteuliyev, M., Nguyen, T. & Coltart, D. Diastereoselective addition of Grignard reagents to α-epoxy N-sulfonyl hydrazones. Nature Chem 7, 1024–1027 (2015). https://doi.org/10.1038/nchem.2364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2364

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing