Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids


Csp2Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: C–C bond-forming reactions, including this work.
Figure 2: Scale up and downstream reactivity of coupling products.


  1. 1

    de Meijere, A., Brase, S. & Oestreich, M. Metal Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

    Google Scholar 

  2. 2

    Cooper, T. W. J., Campbell, I. B. & MacDonald, S. J. F. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. 49, 8082–8091 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. 51, 1114–1122 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Wiley, 2006).

    Google Scholar 

  7. 7

    Howell, G. P. Asymmetric and diastereoselective conjugate addition reactions: C–C bond formation at large scale. Org. Process Res. Dev. 16, 1258–1272 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis: Supplement 2 (Springer, 2004).

    Google Scholar 

  9. 9

    Takaya, Y., Ogasawara, M. & Hayashi, T. Rhodium-catalyzed asymmetric 1,4-addition of aryl- and alkenylboronic acids to enones. J. Am. Chem. Soc. 3, 5579–5580 (1998).

    Article  Google Scholar 

  10. 10

    Hayashi, T. & Yamasaki, K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 103, 2829–2844 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Evans, P. A. Modern Rhodium-Catalyzed Organic Reactions (Wiley, 2005).

    Google Scholar 

  12. 12

    Tsuji, J., Minami, I. & Shimizu, I. Allyation of carbonucleophiles with allylic carbonates under neutral conditions catalyzed by rhodium complexes. Tetrahedron Lett. 25, 5157–5160 (1984).

    CAS  Article  Google Scholar 

  13. 13

    Evans, P. A. & Kennedy, L. J. Enantiospecific and regioselective rhodium-catalyzed allylic alkylation: diastereoselective approach to quaternary carbon stereogenic centers. Org. Lett. 2, 2213–2215 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Evans, P. A. & Leahy, D. K. Regioselective and enantiospecific rhodium-catalyzed allylic alkylation reactions using copper(I) enolates: synthesis of (–)-sugiresinol dimethyl ether. J. Am. Chem. Soc. 125, 8974–8975 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Evans, P. A. & Uraguchi, D. Regio- and enantiospecific rhodium-catalyzed arylation of unsymmetrical fluorinated acyclic allylic carbonates: inversion of absolute configuration. J. Am. Chem. Soc. 125, 7158–7159 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Hayashi, T., Okada, A., Suzuka, T. & Kawatsura, M. High enantioselectivity in rhodium-catalyzed allylic alkylation of 1-substituted 2-propenyl acetates. Org. Lett. 5, 1713–1715 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Menard, F., Chapman, T. M., Dockendorff, C. & Lautens, M. Rhodium-catalyzed asymmetric allylic substitution with boronic acid nucleophiles. Org. Lett. 8, 4569–4572 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Menard, F., Perez, D., Sustac Roman, D., Chapman, T. M. & Lautens, M. Ligand-controlled selectivity in the desymmetrization of meso cyclopenten-1,4-diols via rhodium(I)-catalyzed addition of arylboronic acids. J. Org. Chem. 75, 4056–4068 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Trost, B. M. & Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Lu, Z. & Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed. 47, 258–297 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. 44, 3974–4001 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Trost, B. M. & Fandrick, D. R. Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Aldrichim. Acta 40, 59–72 (2007).

    CAS  Google Scholar 

  25. 25

    Trost, B. M. & Thaisrivongs, D. A. Strategy for employing unstabilized nucleophiles in palladium-catalyzed asymmetric allylic alkylations. J. Am. Chem. Soc. 130, 14092–14093 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Misale, A., Niyomchon, S., Luparia, M. & Maulide, N. Asymmetric palladium-catalyzed allylic alkylation using dialkylzinc reagents: a remarkable ligand effect. Angew. Chem. Int. Ed. 53, 7068–7073 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Langlois, J.-B., Emery, D., Mareda, J. & Alexakis, A. Mechanistic identification and improvement of a direct enantioconvergent transformation in copper-catalyzed asymmetric allylic alkylation. Chem. Sci. 3, 1062–1069 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nature Chem. 2, 972–976 (2010).

    CAS  Article  Google Scholar 

  29. 29

    You, H., Rideau, E., Sidera, M. & Fletcher, S. P. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 517, 351–355 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Sidera, M. & Fletcher, S. P. Cu-catalyzed asymmetric addition of sp2-hybridized zirconium nucleophiles to racemic allyl bromides. Chem. Commun. 51, 5044–5047 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Hamilton, J. Y., Sarlah, D. & Carreira, E. M. Iridium-catalyzed enantioselective allylic vinylation. J. Am. Chem. Soc. 135, 994–997 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Yin, J. & Buchwald, S. L. A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds. J. Am. Chem. Soc. 122, 12051–12052 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Baudoin, O. The asymmetric Suzuki coupling route to axially chiral biaryls. Eur. J. Org. Chem. 4223–4229 (2005).

    Article  Google Scholar 

  34. 34

    Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Sakai, M., Hayashi, H. & Miyaura, N. Rhodium-catalyzed conjugate addition of aryl- or 1-alkenylboronic acids to enones. Organometallics 16, 4229–4231 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Hayashi, T., Takahashi, M., Takaya, Y. & Ogasawara, M. Catalytic cycle of rhodium-catalyzed asymmetric 1, 4-addition of organoboronic acids. arylrhodium, oxa-π-allylrhodium, and hydroxorhodium intermediates. J. Am. Chem. Soc. 124, 5052–5058 (2002).

    CAS  Article  Google Scholar 

  38. 38

    Puchot, C. et al. Nonlinear effects in asymmetric synthesis. examples in asymmetric oxidations and aldolization reactions. J. Am. Chem. Soc. 108, 2353–2357 (1986).

    CAS  Article  Google Scholar 

Download references


We acknowledge financial support from the Engineering and Physical Sciences Research Council (EP/H003711/1, a Career Acceleration Fellowship to S.F.).

Author information




M.S. performed the experiments and S.F. guided the research. Both authors contributed to designing the experiments, analysing the data and writing the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors are named as inventors on a UK patent application filed by Isis Innovation, which is the technology transfer arm of the University of Oxford.

Supplementary information

Supplementary information

Supplementary information (PDF 5920 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sidera, M., Fletcher, S. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nature Chem 7, 935–939 (2015). https://doi.org/10.1038/nchem.2360

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing