Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

Abstract

The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bottom-up synthesis of hexoses from achiral starting materials via chemical or biocatalytic routes.
Figure 2: Time progression curves for the enzymatic synthesis of L-xylose (3b) and D-idose (3a).
Figure 3: Molecular models of FSA-bound intermediates during formation of D-idose (3a) catalysed by FSA A129T/A165G.

Similar content being viewed by others

References

  1. Weymouth-Wilson, A. C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110 (1997).

    Article  CAS  Google Scholar 

  2. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  Google Scholar 

  3. Stallforth, P., Lepenies, B., Adibekian, A. & Seeberger, P. H. Carbohydrates: a frontier in medicinal chemistry. J. Med. Chem. 52, 5561–5577 (2009).

    Article  CAS  Google Scholar 

  4. Wong, C.-H. Carbohydrate-based Drug Discovery Vols 1 & 2 (Wiley, 2003).

  5. Campo, V. L., Aragao-Leoneti, V., Teixeira, M. B. M. & Carvalho, I. Carbohydrates and glycoproteins: cellular recognition and drug design. New Dev. Med. Chem. 1, 133–151 (2010).

    CAS  Google Scholar 

  6. Furukawa, K. et al. Fine tuning of cell signals by glycosylation. J. Biochem. 151, 573–578 (2012).

    Article  CAS  Google Scholar 

  7. Galan, M. C., Benito-Alifonso, D. & Watt, G. M. Carbohydrate chemistry in drug discovery. Org. Biomol. Chem. 9, 3598–3610 (2011).

    Article  CAS  Google Scholar 

  8. Grunwald, P. in Carbohydrate-Modifying Biocatalysts (ed. Grunwald, P.) 29–118 (Pan Stanford, 2012).

    Google Scholar 

  9. Hudlicky, T., Entwistle, D. A., Pitzer, K. K. & Thorpe, A. J. Modern methods of monosaccharide synthesis from non-carbohydrate sources. Chem. Rev. 96, 1195–1220 (1996).

    Article  CAS  Google Scholar 

  10. Mlynarski, J. & Gut, B. Organocatalytic synthesis of carbohydrates. Chem. Soc. Rev. 41, 587–596 (2012).

    Article  CAS  Google Scholar 

  11. Markert, M. & Mahrwald, R. Total syntheses of carbohydrates: organocatalyzed aldol additions of dihydroxyacetone. Chem. Eur. J. 14, 40–48 (2008).

    Article  CAS  Google Scholar 

  12. Mahrwald, R. Modern Methods in Stereoselective Aldol Reactions (Wiley, 2013).

    Book  Google Scholar 

  13. Hein, J. E. & Blackmond, D. G. On the origin of single chirality of amino acids and sugars in biogenesis. Acc. Chem. Res. 45, 2045–2054 (2012).

    Article  CAS  Google Scholar 

  14. Ruiz-Mirazo, K., Briones, C. & De La Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  Google Scholar 

  15. Northrup, A. B. & MacMillan, D. W. C. Two-step synthesis of carbohydrates by selective aldol reactions. Science 305, 1752–1755 (2004).

    Article  CAS  Google Scholar 

  16. Northrup, A. B., Mangion, I. K., Hettche, F. & MacMillan, D. W. C. Enantioselective organocatalytic direct aldol reactions of α-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed. 43, 2152–2154 (2004).

    Article  CAS  Google Scholar 

  17. Clapés, P. & Garrabou, X. Current trends in asymmetric synthesis with aldolases. Adv. Synth. Catal. 353, 2263–2283 (2011).

    Article  Google Scholar 

  18. Clapés, P. & Joglar, J. in Modern Methods in Stereoselective Aldol Reactions (ed. Mahrwald, R.) 475–528 (Wiley, 2013).

    Book  Google Scholar 

  19. Wong, C.-H. et al. Recombinant 2-deoxyribose-5-phosphate aldolase in organic synthesis: use of sequential two-substrate and three-substrate aldol reactions. J. Am. Chem. Soc. 117, 3333–3339 (1995).

    Article  CAS  Google Scholar 

  20. Jennewein, S. et al. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase. Biotechnol. J. 1, 537–548 (2006).

    Article  CAS  Google Scholar 

  21. Durrwachter, J. R., Drueckhammer, D. G., Nozaki, K., Sweers, H. M. & Wong, C.-H. Enzymic aldol condensation/isomerization as a route to unusual sugar derivatives. J. Am. Chem. Soc. 108, 7812–7818 (1986).

    Article  CAS  Google Scholar 

  22. Alajarin, R., Garcia-Junceda, E. & Wong, C.-H. A short enzymic synthesis of L-glucose from dihydroxyacetone phosphate and L-glyceraldehyde. J. Org. Chem. 60, 4294–4295 (1995).

    Article  CAS  Google Scholar 

  23. Samland, A. K., Rale, M., Sprenger, G. A. & Fessner, W.-D. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold. ChemBioChem 12, 1454–1474 (2011).

    Article  CAS  Google Scholar 

  24. Garrabou, X. et al. Asymmetric self- and cross-aldol reaction of glycolaldehyde catalyzed by D-fructose-6-phosphate aldolase. Angew. Chem. Int. Ed. 48, 5521–5525 (2009).

    Article  CAS  Google Scholar 

  25. Gutierrez, M., Parella, T., Joglar, J., Bujons, J. & Clapés, P. Structure-guided redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation. Chem. Commun. 47, 5762–5764 (2011).

    Article  CAS  Google Scholar 

  26. Szekrenyi, A. et al. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde. Chem. Eur. J. 20, 12572–12583 (2014).

    Article  CAS  Google Scholar 

  27. Castillo, J. A. et al. A mutant D-fructose-6-phosphate aldolase (Ala129Ser) with improved affinity towards dihydroxyacetone for the synthesis of polyhydroxylated compounds. Adv. Synth. Catal. 352, 1039–1046 (2010).

    Article  CAS  Google Scholar 

  28. Concia, A. L. et al. D-Fructose-6-phosphate aldolase in organic synthesis: cascade chemical-enzymatic preparation of sugar-related polyhydroxylated compounds. Chem. Eur. J. 15, 3808–3816 (2009).

    Article  CAS  Google Scholar 

  29. Soler, A. et al. Sequential biocatalytic aldol reactions in multistep asymmetric synthesis: pipecolic acid, piperidine and pyrrolidine (homo)iminocyclitol derivatives from achiral building blocks. Adv. Synth. Catal. 356, 3007–3024 (2014).

    Article  CAS  Google Scholar 

  30. Rale, M., Schneider, S., Sprenger, G. A., Samland, A. K. & Fessner, W.-D. Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space. Chem. Eur. J. 17, 2623–2632 (2011).

    Article  CAS  Google Scholar 

  31. Schrödinger Suite 2014-3 (2014).

  32. Guaragna, A., D'Alonzo, D., Paolella, C., Napolitano, C. & Palumbo, G. Highly stereoselective de novo synthesis of L-hexoses. J. Org. Chem. 75, 3558–3568 (2010).

    Article  CAS  Google Scholar 

  33. Fessner, W. -D. et al. Enzymes in organic synthesis. Part 1. Diastereoselective, enzymatic aldol addition with L-rhamnulose- and L-fuculose-1-phosphate aldolases from E. coli. Angew. Chem. Int. Ed. 30, 555–558 (1991).

    Article  Google Scholar 

  34. Bolt, A., Berry, A. & Nelson, A. Directed evolution of aldolases for exploitation in synthetic organic chemistry. Arch. Biochem. Biophys. 474, 318–330 (2008).

    Article  CAS  Google Scholar 

  35. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  CAS  Google Scholar 

  36. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  CAS  Google Scholar 

  37. Brewer, A. & Davis, A. P. Chiral encoding may provide a simple solution to the origin of life. Nature Chem. 6, 569–574 (2014).

    Article  CAS  Google Scholar 

  38. Müller, M. M., Windsor, M. A., Pomerantz, W. C., Gellman, S. H. & Hilvert, D. A rationally designed aldolase foldamer. Angew. Chem. Int. Ed. 48, 922–925 (2009).

    Article  Google Scholar 

  39. Currin, A., Swainston, N., Day, P. J. & Kell, D. B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 1172–1239 (2015).

    Article  CAS  Google Scholar 

  40. Samland, A. K. & Sprenger, G. A. Transaldolase: from biochemistry to human disease. Int. J. Biochem. Cell Biol. 41, 1482–1494 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish MINECO grants CTQ2012-31605 and CTQ2012-32436, the Generalitat de Catalunya (2009 SGR 00281), ERA-IB MICINN, PIM2010EEI-00607 (EIB.10.012. MicroTechEnz-EIB, www.fkit.unizg.hr/miten) and COST Action CM1303 Systems Biocatalysis. A.S. acknowledges the CSIC for a JAE predoctoral contract programme.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and X.G. designed the study. A.S. and X.G. performed mutagenesis, library screening, activity measurements and synthesis of the compounds. J.B. performed the molecular docking experiments and designed the mutations. T.P. performed and supervised the NMR experiments and structural assignation of compounds. J.J., J.B. and P.C. supervised the scientific work. All authors contributed to writing the paper.

Corresponding author

Correspondence to Pere Clapés.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szekrenyi, A., Garrabou, X., Parella, T. et al. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nature Chem 7, 724–729 (2015). https://doi.org/10.1038/nchem.2321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing