Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atropselective syntheses of (−) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

Subjects

Abstract

Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2′-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Axially chiral, dimeric tetrahydroxanthone natural products and point-to-axial chirality transfer strategy.
Figure 2: Scalable syntheses of enantiopure tetrahydroxanthone monomers.
Figure 3: One-pot Suzuki dimerization of chiral tetrahydroxanthone monomers (+)-18.
Figure 4: Syntheses of (−) and (+)-rugulotrosin A and atrop-rugulotrosin A.
Figure 5: Computational studies for atropselective Suzuki dimerization.

References

  1. 1

    Moss, G. P. Basic terminology of stereochemistry. Pure Appl. Chem. 68, 2193–2222 (1996).

    CAS  Google Scholar 

  2. 2

    Zask, A., Murphy, J. & Ellestad, G. A. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality 25, 265–274 (2013).

    CAS  PubMed  Google Scholar 

  3. 3

    Clayden, J., Moran, W. J., Edwards, P. J. & LaPlante, S. R. The challenge of atropisomerism in drug discovery. Angew. Chem. Int. Ed. 48, 6398–6401 (2009).

    CAS  Google Scholar 

  4. 4

    LaPlante, S. R., Edwards, P. J., Fader, L. D., Jakalian, A. & Hucke, O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem 6, 505–513 (2011).

    CAS  PubMed  Google Scholar 

  5. 5

    Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5387–5427 (2005).

    Google Scholar 

  6. 6

    Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    CAS  PubMed  Google Scholar 

  7. 7

    Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Liau, B. B., Milgram, B. C. & Shair, M. D. Total syntheses of HMP-Y1, hibarimicinone, and HMP-P1. J. Am. Chem. Soc. 134, 16765–16772 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Masters, K-S. & Bräse, S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem. Rev. 112, 3717–3776 (2012).

    CAS  PubMed  Google Scholar 

  10. 10

    Wezeman, T., Masters, K-S. & Bräse, S. Double trouble—the art of synthesis of chiral dimeric natural products. Angew. Chem. Int. Ed. 53, 4524–4526 (2014).

    CAS  Google Scholar 

  11. 11

    Franck, B., Gottschalk, E. M., Ohnsorge, U. & Baumann, G. The structure of secalonic acids A and B. Angew. Chem. Int. Ed. Engl. 3, 441–442 (1964).

    Google Scholar 

  12. 12

    Steyn, P. S. The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron 26, 51–57 (1970).

    CAS  PubMed  Google Scholar 

  13. 13

    Stewart, M. et al. Rugulotrosins A and B: two new antibacterial metabolites from an Australian isolate of a Penicillium sp. J. Nat. Prod. 67, 728–730 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Kikuchi, H., Isobe, M., Kurata, S., Katou, Y. & Oshima, Y. New dimeric and monomeric chromanones, gonytolides D-G, isolated from the fungus Gonytrichum sp. Tetrahedron 68, 6218–6223 (2012).

    CAS  Google Scholar 

  15. 15

    Kikuchi, H. et al. Structures of the dimeric and monomeric chromanones, gonytolides A–C, isolated from the fungus Gonytrichum sp. and their promoting activities of innate immune responses. Org. Lett. 13, 4624–4627 (2011).

    CAS  PubMed  Google Scholar 

  16. 16

    Nicolaou, K. C. & Li, A. Total syntheses and structural revision of α- and β-diversonolic esters and total syntheses of diversonol and blennolide C. Angew. Chem. Int. Ed. 47, 6579–6582 (2008).

    CAS  Google Scholar 

  17. 17

    Tietze, L. F. et al. Enantioselective total synthesis of (−)-diversonol. Chem. Eur. J. 19, 4876–4882 (2013).

    CAS  PubMed  Google Scholar 

  18. 18

    Tietze, L. F., Ma, L., Reiner, J. R., Jackenkroll, S. & Heidemann, S. Enantioselective total synthesis of (−)-blennolide A. Chem. Eur. J. 19, 8610–8614 (2013).

    CAS  PubMed  Google Scholar 

  19. 19

    Tietze, L. F., Jackenkroll, S., Hierold, J., Ma, L. & Waldecker, B. A domino approach to the enantioselective total syntheses of blennolide C and gonytolide C. Chem. Eur. J. 20, 8628–8635 (2014).

    CAS  PubMed  Google Scholar 

  20. 20

    Nising, C. F., Ohnemüller, U. K. & Bräse, S. The total synthesis of the fungal metabolite diversonol. Angew. Chem. Int. Ed. 45, 307–309 (2006).

    CAS  Google Scholar 

  21. 21

    Meister, A. C. et al. Total synthesis of blennolide mycotoxins: design, synthetic routes and completion. Eur. J. Org. Chem. 4861–4875 (2014).

    CAS  Google Scholar 

  22. 22

    Qin, T., Johnson, R. P. & Porco, J. A. Jr Vinylogous addition of siloxyfurans to benzopyryliums: a concise approach to the tetrahydroxanthone natural products. J. Am. Chem. Soc. 133, 1714–1717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Qin, T. & Porco, J. A. Jr Total syntheses of secalonic acids A and D. Angew. Chem. Int. Ed. 53, 3107–3110 (2014).

    CAS  Google Scholar 

  24. 24

    Wilson, J. M. & Cram, D. J. Chiral leaving groups induce asymmetry in syntheses of binaphthyls in nucleophilic aromatic substitution reactions. J. Am. Chem. Soc. 104, 881–884 (1982).

    CAS  Google Scholar 

  25. 25

    Evans, D. A. et al. Nonconventional stereochemical issues in the design of the synthesis of the vancomycin antibiotics: challenges imposed by axial and nonplanar chiral elements in the heptapeptide aglycons. Angew. Chem. Int. Ed. 37, 2704–2708 (1998).

    CAS  Google Scholar 

  26. 26

    Burns, N. Z., Krylova, Z. N., Hanroush, R. N. & Baran, P. S. Scalable total synthesis and biological evaluation of haouamine A and its atropisomer. J. Am. Chem. Soc. 131, 9172–9173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Guo, F., Konkol, L. C. & Thomson, R. J. Enantioselective synthesis of biphenols from 1,4-diketones by traceless central-to-axial chirality exchange. J. Am. Chem. Soc. 133, 18–20 (2011).

    CAS  PubMed  Google Scholar 

  28. 28

    Konkol, L. C., Guo, F., Sarjeant, A. A. & Thomson, R. J. Enantioselective total synthesis and studies into the configurational stability of bismurrayaquinone A. Angew. Chem. Int. Ed. 50, 9931–9934 (2011).

    CAS  Google Scholar 

  29. 29

    Park, Y. S. et al. Synthesis of (−)-viriditoxin: a 6,6′-binaphthopyran-2-one that targets the bacterial cell division protein FtsZ. Angew. Chem. Int. Ed. 50, 3730–3733 (2011).

    CAS  Google Scholar 

  30. 30

    Lipshutz, B. H. & Keith, L. M. A stereospecific, intermolecular biaryl-coupling approach to korupensamine A en route to the michellamines. Angew. Chem. Int. Ed. 38, 3530–3533 (1999).

    CAS  Google Scholar 

  31. 31

    Huang, S., Peterson, T. B. & Lipshutz, B. H. Total synthesis of (+)-korupensamine B via an atropselective intermolecular biaryl coupling. J. Am. Chem. Soc. 132, 14021–14023 (2010).

    CAS  PubMed  Google Scholar 

  32. 32

    Coleman, R. S. & Grant, E. B. Atropdiastereoselective total synthesis of phleichrome and the protein kinase C inhibitor calphostin A. J. Am. Chem. Soc. 116, 8795–8796 (1994).

    CAS  Google Scholar 

  33. 33

    Broka, C. A. Total syntheses of phleichrome, calphostin A, and calphostin D. Unusual stereoselective and stereospecific reactions in the synthesis of perylenequinones. Tetrahedron Lett. 32, 859–862 (1991).

    CAS  Google Scholar 

  34. 34

    Birman, V. B. & Li, X. Homobenzotetramisole: an effective catalyst for kinetic resolution of aryl-cycloalkanols. Org. Lett. 10, 1115–1118 (2008).

    CAS  PubMed  Google Scholar 

  35. 35

    Müller, C. E. & Schreiner, P. R. Organocatalytic enantioselective acyl transfer onto racemic as well as meso alcohols, amines, and thiols. Angew. Chem. Int. Ed. 50, 6012–6042 (2010).

    Google Scholar 

  36. 36

    Barder, T. E., Walker, S. D., Martinelli, J. R. & Buchwald, S. L. Catalysts for Suzuki–Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 127, 4685–4696 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Masamune, S., Choy, W., Petersen, J. S. & Sita, L. R. Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew. Chem. Int. Ed. Engl. 24, 1–30 (1985).

    Google Scholar 

  38. 38

    Tang, W. et al. A general and special catalyst for Suzuki–Miyaura coupling processes. Angew. Chem. Int. Ed. 49, 5879–5883 (2010).

    CAS  Google Scholar 

  39. 39

    Xu, G., Fu, W., Liu, G., Senanayake, C. H. & Tang, W. Efficient syntheses of korupensamines A, B and michellamine B by asymmetric Suzuki–Miyaura coupling reactions. J. Am. Chem. Soc. 136, 570–573 (2014).

    CAS  PubMed  Google Scholar 

  40. 40

    Hamada, T., Chieffi, A., Ahman, J. & Buchwald, S. L. An improved catalyst for the asymmetric arylation of ketone enolates. J. Am. Chem. Soc. 124, 1261–1268 (2002).

    CAS  PubMed  Google Scholar 

  41. 41

    Zhou, Y. et al. Enantioselective synthesis of axially chiral multifunctionalized biaryls via asymmetric Suzuki–Miyaura coupling. Org. Lett. 15, 5508–5511 (2013).

    CAS  PubMed  Google Scholar 

  42. 42

    Zhou, Y. et al. Enantioselective synthesis of axially chiral biaryl monophosphine oxides via direct asymmetric Suzuki coupling and DFT investigations of the enantioselectivity. ACS Catal. 4, 1390–1397 (2014).

    CAS  Google Scholar 

  43. 43

    Bruno, N. C., Tudge, M. T. & Buchwald, S. L. Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions. Chem. Sci. 4, 916–920 (2013).

    CAS  PubMed  Google Scholar 

  44. 44

    Little, S. & Trice, J. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001); http://onlinelibrary.wiley.com/doi/10.1002/047084289X.rn01181/abstract

    Google Scholar 

  45. 45

    Molander, G. A., Trice, S. L. J., Kennedy, S. M., Dreher, S. D. & Tudge, M. T. Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid. J. Am. Chem. Soc. 134, 11667–11673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Gensch, T. et al. Snapshot of the palladium (II)-catalyzed oxidative biaryl bond formation by X-ray analysis of the intermediate diaryl palladium (II) complex. Chem. Eur. J. 18, 770–776 (2012).

    CAS  PubMed  Google Scholar 

  47. 47

    Shen, X., Jones, G. O., Watson, D. A., Bhayana, B. & Buchwald, S. L. Enantioselective synthesis of axially chiral biaryls by the Pd-catalyzed Suzuki–Miyaura reaction: substrate scope and quantum mechanical investigation. J. Am. Chem. Soc. 132, 11278–11287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the National Institutes of Health (NIH, GM-099920) and Vertex Pharmaceuticals, Inc. (graduate fellowship to T.Q.) is gratefully acknowledged. The authors thank J. Bacon for crystal structure determination, B. Qu and C. Senanayake for providing both (R) and (S)-BI-DIME ligands and E. Lacey for supplying extracts of Penicillium nov. sp. (MST-F8741). Research at the BU-CMD was supported by the NIH (grant GM-067041). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (grant OCI-1053575).

Author information

Affiliations

Authors

Contributions

T.Q. and J.A.P. conceived of the project, designed and carried out the experiments, analysed the data and wrote most of the paper. S.L.S-J. and R.P.J. performed computational studies. Z.G.K. and R.J.C. performed natural extract comparisons and biological studies. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to John A. Porco Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7041 kb)

Supplementary information

Crystallographic data for compound (-)-19. (CIF 118 kb)

Supplementary information

Crystallographic data for compound (-)-22. (CIF 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, T., Skraba-Joiner, S., Khalil, Z. et al. Atropselective syntheses of (−) and (+) rugulotrosin A utilizing point-to-axial chirality transfer. Nature Chem 7, 234–240 (2015). https://doi.org/10.1038/nchem.2173

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing