Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contemporary screening approaches to reaction discovery and development

Subjects

Abstract

New organic reactivity has often been discovered by happenstance. Several recent research efforts have attempted to leverage this to discover new reactions. In this Review, we attempt to unify reported approaches to reaction discovery on the basis of the practical and strategic principles applied. We concentrate on approaches to reaction discovery as opposed to reaction development, though conceptually groundbreaking approaches to identifying efficient catalyst systems are also considered. Finally, we provide a critical overview of the utility and application of the reported methods from the perspective of a synthetic chemist, and consider the future of high-throughput screening in reaction discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative chemistries developed using the first high-throughput screening and combinatorial approaches.
Figure 2: Novel reactivity discovered using multidimensional screens.
Figure 3: Sandwich immunoassays.
Figure 4: DNA-templated synthesis in reaction discovery.
Figure 5: Reactions discovered using matrix-assisted laser desorption/ionization-derived analysis techniques.
Figure 6: Exploiting colourimetry and fluorescence in reaction development.
Figure 7: Application of enzyme-based screening in reaction development.
Figure 8: Screening of reaction intermediates and transition states.

Similar content being viewed by others

References

  1. Nicolaou, K. C., Hanko, R. & Hartwig, W. Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials (Wiley-VCH, 2002).

    Book  Google Scholar 

  2. Weber, L., Illgen, K. & Almstetter, M. Discovery of new multi component reactions with combinatorial methods. Synlett 1999, 366–374 (1999).

    Article  Google Scholar 

  3. Reetz, M. T. Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. 40, 284–310 (2001).

    Article  CAS  Google Scholar 

  4. Tsukamoto, M. & Kagan, H. B. Recent advances in the measurement of enantiomeric excesses. Adv. Synth. Catal. 344, 453–463 (2002).

    Article  CAS  Google Scholar 

  5. Leung, D., Kang, S. O. & Anslyn, E. V. Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Menger, F. M., Eliseev, A. V. & Migulin, V. A. Phosphatase catalysis developed via combinatorial organic chemistry. J. Org. Chem. 60, 6666–6667 (1995).

    Article  CAS  Google Scholar 

  7. Liu, G. & Ellman, J. A. A general solid-phase synthesis strategy for the preparation of 2-pyrrolidinemethanol ligands. J. Org. Chem. 60, 7712–7713 (1995).

    Article  CAS  Google Scholar 

  8. Burgess, K., Lim, H-J., Porte, A. M. & Sulikowski, G. A. New catalysts and conditions for a C–H insertion reaction identified by high throughput catalyst screening. Angew. Chem. Int. Ed. Engl. 35, 220–222 (1996).

    Article  CAS  Google Scholar 

  9. Porte, A. M., Reibenspies, J. & Burgess, K. Design and optimization of new phosphine oxazoline ligands via high-throughput catalyst screening. J. Am. Chem. Soc. 120, 9180–9187 (1998).

    Article  CAS  Google Scholar 

  10. Cole, B. M. et al. Discovery of chiral catalysts through ligand diversity: Ti-catalyzed enantioselective addition of TMSCN to meso epoxides. Angew. Chem. Int. Ed. Engl. 35, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  11. Gilbertson, S. R. & Wang, X. The combinatorial synthesis of chiral phosphine ligands. Tetrahedron Lett. 37, 6475–6478 (1996).

    Article  CAS  Google Scholar 

  12. Sigman, M. S. & Jacobsen, E. N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 120, 4901–4902 (1998).

    Article  CAS  Google Scholar 

  13. Francis, M. B., Finney, N. S. & Jacobsen, E. N. Combinatorial approach to the discovery of novel coordination complexes. J. Am. Chem. Soc. 118, 8983–8984 (1996).

    Article  CAS  Google Scholar 

  14. Francis, M. B. & Jacobsen, E. N. Discovery of novel catalysts for alkene epoxidation from metal-binding combinatorial libraries. Angew. Chem. Int. Ed. 38, 937–941 (1999).

    Article  CAS  Google Scholar 

  15. Ding, K. Synergistic effect of binary component ligands in chiral catalyst library engineering for enantioselective reactions. Chem. Commun. 909–921 (2008).

  16. Ding, K., Du, H., Yuan, Y. & Long, J. Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity. Chem. Eur. J. 10, 2872–2884 (2004).

    Article  CAS  Google Scholar 

  17. Reetz, M. T., Sell, T., Meiswinkel, A. & Mehler, G. A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. Angew. Chem. Int. Ed. 42, 790–793 (2003).

    Article  CAS  Google Scholar 

  18. Reetz, M. T. & Mehler, G. Mixtures of chiral and achiral monodentate ligands in asymmetric Rh-catalyzed olefin hydrogenation: reversal of enantioselectivity. Tetrahedron Lett. 44, 4593–4596 (2003).

    Article  CAS  Google Scholar 

  19. Peña, D. et al. Improving conversion and enantioselectivity in hydrogenation by combining different monodentate phosphoramidites: a new combinatorial approach in asymmetric catalysis. Org. Biomol. Chem. 1, 1087–1089 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Minnaard, A. J., Feringa, B. L., Lefort, L. & de Vries, J. G. Asymmetric hydrogenation using monodentate phosphoramidite ligands. Acc. Chem. Res. 40, 1267–1277 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Furka, Á., Sebestyén, F., Asgedom, M. & Dibó, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Prot. Res. 37, 487–493 (1991).

    Article  CAS  Google Scholar 

  22. Evans, C. A. & Miller, S. J. Proton-activated fluorescence as a tool for simultaneous screening of combinatorial chemical reactions. Curr. Opin. Chem. Biol. 6, 333–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lichtor, P. A. & Miller, S. J. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. Nature Chem. 4, 990–995 (2012).

    Article  CAS  Google Scholar 

  24. McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 42, 463–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beeler, A. B., Su, S., Singleton, C. A. & Porco, J. A. Discovery of chemical reactions through multidimensional screening. J. Am. Chem. Soc. 129, 1413–1419 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kinoshita, H., Ingham, O. J., Ong, W. W., Beeler, A. B. & Porco, J. A. Tandem processes identified from reaction screening: nucleophilic addition to aryl N-phosphinylimines employing La(III)-TFAA activation. J. Am. Chem. Soc. 132, 6412–6418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elvira, K. S., Casadevall i Solvas, X., Wootton, R. C. R. & DeMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chem. 5, 905–915 (2013).

    Article  CAS  Google Scholar 

  29. Goodell, J. R. et al. Development of an automated microfluidic reaction platform for multidimensional screening: reaction discovery employing bicyclo[3.2.1]octanoid scaffolds. J. Org. Chem. 74, 6169–6180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, V. I., Goodell, J. R., Ingham, O. J., Porco, J. A. & Beeler, A. B. Multidimensional reaction screening for photochemical transformations as a tool for discovering new chemotypes. J. Org. Chem. 79, 3838–3846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klán, P. & Wirz, J. Photochemistry of organic compounds: from concepts to practice (Wiley-Blackwell, 2009).

    Book  Google Scholar 

  32. Treece, J. L., Goodell, J. R., Vander Velde, D., Porco, J. A. & Aubé, J. Reaction discovery using microfluidic-based multidimensional screening of polycyclic iminium ethers. J. Org. Chem. 75, 2028–2038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robbins, D. W. & Hartwig, J. F. A simple, multidimensional approach to high-throughput discovery of catalytic reactions. Science 333, 1423–1427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, X. & Kagan, H. B. One-pot multi-substrate screening in asymmetric catalysis. Chirality 10, 120–124 (1998).

    Article  CAS  Google Scholar 

  35. Gennari, C., Ceccarelli, S., Piarulli, U., Montalbetti, C. A. G. N. & Jackson, R. F. W. Investigation of a new family of chiral ligands for enantioselective catalysis via parallel synthesis and high-throughput screening. J. Org. Chem. 63, 5312–5313 (1998).

    Article  CAS  Google Scholar 

  36. Satyanarayana, T. & Kagan, H. B. The multi-substrate screening of asymmetric catalysts. Adv. Synth. Catal. 347, 737–748 (2005).

    Article  CAS  Google Scholar 

  37. Duursma, A., Minnaard, A. J. & Feringa, B. L. One-pot multi-substrate enantioselective conjugate addition of diethylzinc to nitroalkenes. Tetrahedron 58, 5773–5778 (2002).

    Article  CAS  Google Scholar 

  38. Satyanarayana, T., Abraham, S. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).

    Article  CAS  Google Scholar 

  39. an der Heiden, M. R. et al. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling. Chem. Eur. J 14, 2857–2866 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Richter, C., Schaepe, K., Glorius, F. & Ravoo, B. J. Tailor-made N-heterocyclic carbenes for nanoparticle stabilization. Chem. Commun. 50, 3204–3207 (2014).

    Article  CAS  Google Scholar 

  41. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).

    Article  CAS  PubMed  Google Scholar 

  42. Van Weemen, B. K. & Schuurs, A. H. W. M. Immunoassay using antigen–enzyme conjugates. FEBS Lett. 15, 232–236 (1971).

    Article  CAS  PubMed  Google Scholar 

  43. Taran, F. et al. High-throughput screening of enantioselective catalysts by immunoassay. Angew. Chem. Int. Ed. 41, 124–127 (2002).

    Article  CAS  Google Scholar 

  44. Quinton, J. et al. Toward the limits of sandwich immunoassay of very low molecular weight molecules. Anal. Chem. 82, 2536–2540 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Vicennati, P., Bensel, N., Wagner, A., Créminon, C. & Taran, F. Sandwich immunoassay as a high-throughput screening method for cross-coupling reactions. Angew. Chem. Int. Ed. 44, 6863–6866 (2005).

    Article  CAS  Google Scholar 

  46. Quinton, J. et al. Reaction discovery by using a sandwich immunoassay. Angew. Chem. Int. Ed. 51, 6144–6148 (2012).

    Article  CAS  Google Scholar 

  47. Kolodych, S. et al. Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. Angew. Chem. Int. Ed. 52, 12056–12060 (2013).

    Article  CAS  Google Scholar 

  48. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  49. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanan, M. W., Rozenman, M. M., Sakurai, K., Snyder, T. M. & Liu, D. R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431, 545–549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Momiyama, N., Kanan, M. W. & Liu, D. R. Synthesis of acyclic alpha, beta-unsaturated ketones via Pd(II)-catalyzed intermolecular reaction of alkynamides and alkenes. J. Am. Chem. Soc. 129, 2230–2231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gorin, D. J., Kamlet, A. S. & Liu, D. R. Reactivity-dependent PCR: direct, solution-phase in vitro selection for bond formation. J. Am. Chem. Soc. 131, 9189–9191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rozenman, M. M., Kanan, M. W. & Liu, D. R. Development and initial application of a hybridization-independent, DNA-encoded reaction discovery system compatible with organic solvents. J. Am. Chem. Soc. 129, 14933–14938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nature Chem. 3, 146–153 (2011).

    Article  CAS  Google Scholar 

  55. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cabrera-Pardo, J. R., Chai, D. I., Liu, S., Mrksich, M. & Kozmin, S. A. Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization. Nature Chem. 5, 423–427 (2013).

    Article  CAS  Google Scholar 

  57. Montavon, T. J., Li, J., Cabrera-Pardo, J. R., Mrksich, M. & Kozmin, S. A. Three-component reaction discovery enabled by mass spectrometry of self-assembled monolayers. Nature Chem. 4, 45–51 (2012).

    Article  CAS  Google Scholar 

  58. Cooper, A. C., McAlexander, L. H., Lee, D-H., Torres, M. T. & Crabtree, R. H. Reactive dyes as a method for rapid screening of homogeneous catalysts. J. Am. Chem. Soc. 120, 9971–9972 (1998).

    Article  CAS  Google Scholar 

  59. Moreira, R., Havranek, M. & Sames, D. New fluorogenic probes for oxygen and carbene transfer: a sensitive assay for single bead-supported catalysts. J. Am. Chem. Soc. 123, 3927–3931 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Shaughnessy, K. H., Kim, P. & Hartwig, J. F. A fluorescence-based assay for high-throughput screening of coupling reactions. Application to Heck chemistry. J. Am. Chem. Soc. 121, 2123–2132 (1999).

    Article  CAS  Google Scholar 

  61. Copeland, G. T. & Miller, S. J. A chemosensor-based approach to catalyst discovery in solution and on solid support. J. Am. Chem. Soc. 121, 4306–4307 (1999).

    Article  CAS  Google Scholar 

  62. Jarvo, E. R., Evans, C. A., Copeland, G. T. & Miller, S. J. Fluorescence-based screening of asymmetric acylation catalysts through parallel enantiomer analysis. Identification of a catalyst for tertiary alcohol resolution. J. Org. Chem. 66, 5522–5527 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Harris, R. F., Nation, A. J., Copeland, G. T. & Miller, S. J. A polymeric and fluorescent gel for combinatorial screening of catalysts. J. Am. Chem. Soc. 122, 11270–11271 (2000).

    Article  CAS  Google Scholar 

  64. Stauffer, S. R., Beare, N. A., Stambuli, J. P. & Hartwig, J. F. Palladium-catalyzed arylation of ethyl cyanoacetate. Fluorescence resonance energy transfer as a tool for reaction discovery. J. Am. Chem. Soc. 123, 4641–4642 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Stambuli, J. P., Stauffer, S. R., Shaughnessy, K. H. & Hartwig, J. F. Screening of homogeneous catalysts by fluorescence resonance energy transfer. Identification of catalysts for room-temperature Heck reactions. J. Am. Chem. Soc. 123, 2677–2678 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Stauffer, S. R. & Hartwig, J. F. Fluorescence resonance energy transfer (FRET) as a high-throughput assay for coupling reactions. Arylation of amines as a case study. J. Am. Chem. Soc. 125, 6977–6985 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Lewis, W. G., Magallon, F. G., Fokin, V. V & Finn, M. G. Discovery and characterization of catalysts for azide–alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc. 126, 9152–9153 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Xia, B. et al. ESIPT-mediated photocycloadditions of 3-hydroxyquinolinones: development of a fluorescence quenching assay for reaction screening. Org. Lett. 13, 1346–1349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rozhkov, R. V., Davisson, V. J. & Bergstrom, D. E. Fluorogenic transformations based on formation of C–C bonds catalyzed by palladium: an efficient approach for high throughput optimizations and kinetic studies. Adv. Synth. Catal. 350, 71–75 (2008).

    Article  CAS  Google Scholar 

  70. Sashuk, V., Schoeps, D. & Plenio, H. Fluorophore tagged cross-coupling catalysts. Chem. Commun. 770–772 (2009).

  71. Barder, T. E. & Buchwald, S. L. Benchtop monitoring of reaction progress via visual recognition with a handheld UV lamp: in situ monitoring of boronic acids in the Suzuki–Miyaura reaction. Org. Lett. 9, 137–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lavastre, O. & Morken, J. P. Discovery of novel catalysts for allylic alkylation with a visual colorimetric assay. Angew. Chem. Int. Ed. 38, 3163–3165 (1999).

    Article  CAS  Google Scholar 

  73. Shabbir, S. H., Regan, C. J. & Anslyn, E. V. Molecular recognition and self-assembly special feature: a general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin. Proc. Natl Acad. Sci. USA 106, 10487–10492 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Löber, O., Kawatsura, M. & Hartwig, J. F. Palladium-catalyzed hydroamination of 1,3-Dienes: A colorimetric assay and enantioselective additions. J. Am. Chem. Soc. 123, 4366–4367 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Kawatsura, M. & Hartwig, J. F. Transition metal-catalyzed addition of amines to acrylic acid derivatives. A high-throughput method for evaluating hydroamination of primary and secondary alkylamines. Organometallics 20, 1960–1964 (2001).

    Article  CAS  Google Scholar 

  76. Kim, S. et al. A simple, fast, and easy assay for transition metal-catalyzed coupling reactions using a paper-based colorimetric iodide sensor. Chem. Commun. 48, 8751–8753 (2012).

    Article  CAS  Google Scholar 

  77. Jung, E. et al. A colorimetric high-throughput screening method for palladium-catalyzed coupling reactions of aryl iodides using a gold nanoparticle-based iodide-selective probe. Angew. Chem. Int. Ed. 50, 4386–4389 (2011).

    Article  CAS  Google Scholar 

  78. Taylor, S. J. & Morken, J. P. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science 280, 267–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Reetz, M., Becker, M. M., Liebl, M. & Fürstner, A. IR-thermographic screening of thermoneutral or endothermic transformations: the ring-closing olefin metathesis reaction. Angew. Chem. Int. Ed. 39, 1236–1239 (2000).

    Article  CAS  Google Scholar 

  80. Reetz, M. T., Becker, M. H., Kühling, K. M. & Holzwarth, A. Time-resolved IR-thermographic detection and screening of enantioselectivity in catalytic reactions. Angew. Chem. Int. Ed. 37, 2647–2650 (1998).

    Article  CAS  Google Scholar 

  81. Fürstner, A. et al. Comparative investigation of ruthenium-based metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands. Chem. Eur. J. 7, 3236–3253 (2001).

    Article  PubMed  Google Scholar 

  82. Connolly, A. R. & Sutherland, J. D. Catalyst screening using an array of thermistors. Angew. Chem. Int. Ed. 39, 4268–4271 (2000).

    Article  CAS  Google Scholar 

  83. Berkowitz, D. B., Bose, M. & Choi, S. In situ enzymatic screening (ISES): a tool for catalyst discovery and reaction development. Angew. Chem. Int. Ed. 41, 1603–1607 (2002).

    Article  CAS  Google Scholar 

  84. Berkowitz, D. B. & Maiti, G. Following an ISES lead: the first examples of asymmetric Ni(0)-mediated allylic amination. Org. Lett. 6, 2661–2664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dey, S., Karukurichi, K. R., Shen, W. & Berkowitz, D. B. Double-cuvette ISES: in situ estimation of enantioselectivity and relative rate for catalyst screening. J. Am. Chem. Soc. 127, 8610–8611 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Dey, S., Powell, D. R., Hu, C. & Berkowitz, D. B. “Cassette” in situ enzymatic screening identifies complementary chiral scaffolds for hydrolytic kinetic resolution across a range of epoxides. Angew. Chem. Int. Ed. 46, 7010–7014 (2007).

    Article  CAS  Google Scholar 

  87. Friest, J. A., Broussy, S., Chung, W. J. & Berkowitz, D. B. Combinatorial catalysis employing a visible enzymatic beacon in real time: synthetically versatile (pseudo)halometalation/carbocyclizations. Angew. Chem. Int. Ed. 50, 8895–8899 (2011).

    Article  CAS  Google Scholar 

  88. Ginotra, S. K., Friest, J. A. & Berkowitz, D. B. Halocarbocyclization entry into the oxabicyclo[4.3.1]decyl exomethylene-δ-lactone cores of linearifolin and zaluzanin A: exploiting combinatorial catalysis. Org. Lett. 14, 968–971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Markert, C. & Pfaltz, A. Screening of chiral catalysts and catalyst mixtures by mass spectrometric monitoring of catalytic intermediates. Angew. Chem. Int. Ed. 43, 2498–2500 (2004).

    Article  CAS  Google Scholar 

  90. Hinderling, C. & Chen, P. Rapid screening of olefin polymerization catalyst libraries by electrospray ionization tandem mass spectrometry. Angew. Chem. Int. Ed. 38, 2253–2256 (1999).

    Article  CAS  Google Scholar 

  91. Markert, C., Rösel, P. & Pfaltz, A. Combinatorial ligand development based on mass spectrometric screening and a double mass-labeling strategy. J. Am. Chem. Soc. 130, 3234–3235 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Müller, C. A. & Pfaltz, A. Mass spectrometric screening of chiral catalysts by monitoring the back reaction of quasienantiomeric products: palladium-catalyzed allylic substitution. Angew. Chem. Int. Ed. 47, 3363–3366 (2008).

    Article  CAS  Google Scholar 

  93. Teichert, A. & Pfaltz, A. Mass spectrometric screening of enantioselective Diels-Alder reactions. Angew. Chem. Int. Ed. 47, 3360–3362 (2008).

    Article  CAS  Google Scholar 

  94. Fleischer, I. & Pfaltz, A. Enantioselective Michael addition to alpha, beta-unsaturated aldehydes: combinatorial catalyst preparation and screening, reaction optimization, and mechanistic studies. Chem. Eur. J. 16, 95–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Bächle, F., Duschmalé, J., Ebner, C., Pfaltz, A. & Wennemers, H. Organocatalytic asymmetric conjugate addition of aldehydes to nitroolefins: identification of catalytic intermediates and the stereoselectivity-determining step by ESI-MS. Angew. Chem. Int. Ed. 52, 12619–12623 (2013).

    Article  CAS  Google Scholar 

  96. Dominguez, B., Hodnett, N. S. & Lloyd-Jones, G. C. Testing racemic chiral catalysts for kinetic resolution potential. Angew. Chem. Int. Ed. 40, 4289–4291 (2001).

    Article  CAS  Google Scholar 

  97. Ebner, C., Müller, C. A., Markert, C. & Pfaltz, A. Determining the enantioselectivity of chiral catalysts by mass spectrometric screening of their racemic forms. J. Am. Chem. Soc. 133, 4710–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wassenaar, J. et al. Catalyst selection based on intermediate stability measured by mass spectrometry. Nature Chem. 2, 417–421 (2010).

    Article  CAS  Google Scholar 

  99. Mader, M. M. & Bartlett, P. A. Binding energy and catalysis: the implications for transition-state analogs and catalytic antibodies. Chem. Rev. 97, 1281–1302 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102, 1–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Brisig, B., Sanders, J. K. M. & Otto, S. Selection and amplification of a catalyst from a dynamic combinatorial library. Angew. Chem. Int. Ed. 42, 1270–1273 (2003).

    Article  CAS  Google Scholar 

  102. Vial, L., Sanders, J. K. M. & Otto, S. A catalyst for an acetal hydrolysis reaction from a dynamic combinatorial library. New J. Chem. 29, 1001–1003 (2005).

    Article  CAS  Google Scholar 

  103. Gasparini, G., Prins, L. J. & Scrimin, P. Exploiting neighboring-group interactions for the self-selection of a catalytic unit. Angew. Chem. Int. Ed. 47, 2475–2479 (2008).

    Article  CAS  Google Scholar 

  104. Matsumoto, M., Estes, D. & Nicholas, K. M. Evolution of metal complex-catalysts by dynamic templating with transition state analogs. Eur. J. Inorg. Chem. 2010, 1847–1852 (2010).

    Article  CAS  Google Scholar 

  105. Kannappan, R. & Nicholas, K. M. Selection of chiral zinc catalysts for the kinetic resolution of esters via dynamic templating. ACS Comb. Sci. 15, 90–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Schmink, J. R., Bellomo, A. & Berritt, S. Scientist-led high-throughput experimentation (HTE) and its utility in academia and industry. Aldrichim. Acta 46, 71–80 (2013).

    Google Scholar 

  107. Molander, G. A., Trice, S. L. J. & Dreher, S. D. Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides: a simplified route to diverse boronate ester derivatives. J. Am. Chem. Soc. 132, 17701–17703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Collins, K. D., Ru¨hling, A. & Glorius, F. Application of a robustness screen for the evaluation of synthetic organic methodology. Nature Protoc. 9, 1348–1353 (2014).

    Article  CAS  Google Scholar 

  109. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nature Chem. 5, 597–601 (2013).

    Article  CAS  Google Scholar 

  110. Collins, K. D. & Glorius, F. Employing a robustness screen: rapid assessment of rhodium(III)-catalysed C–H activation reactions. Tetrahedron 69, 7817–7825 (2013).

    Article  CAS  Google Scholar 

  111. Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. DiRocco, D. A. et al. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. 53, 4802–4806 (2014).

    Article  CAS  Google Scholar 

  113. Zhao, W., Huang, L., Guan, Y. & Wulff, W. D. Three-component asymmetric catalytic Ugi reaction — concinnity from diversity by substrate-mediated catalyst assembly. Angew. Chem. Int. Ed. 53, 3436–3441 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the European Research Council (ERC) under the European Community's Seventh Framework Program (FP7 2007-2013)/ERC grant agreement no 25936, and the DFG (Leibniz award) for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl D. Collins or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, K., Gensch, T. & Glorius, F. Contemporary screening approaches to reaction discovery and development. Nature Chem 6, 859–871 (2014). https://doi.org/10.1038/nchem.2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing