The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics

Abstract

Mass spectrometry is a vital tool for molecular characterization, and the allied technique of ion mobility is enhancing many areas of (bio)chemical analysis. Strong synergy arises between these two techniques because of their ability to ascertain complementary information about gas-phase ions. Ion mobility separates ions (from small molecules up to megadalton protein complexes) based on their differential mobility through a buffer gas. Ion mobility-mass spectrometry (IM-MS) can thus act as a tool to separate complex mixtures, to resolve ions that may be indistinguishable by mass spectrometry alone, or to determine structural information (for example rotationally averaged cross-sectional area), complementary to more traditional structural approaches. Finally, IM-MS can be used to gain insights into the conformational dynamics of a system, offering a unique means of characterizing flexibility and folding mechanisms. This Review critically describes how IM-MS has been used to enhance various areas of chemical and biophysical analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Number of peer-reviewed papers published annually (to end of 2013) combining ion mobility and mass spectrometry.
Figure 2: Schematic diagrams of the main types of ion mobility device.
Figure 3: Arrival-time distributions (ATDs) as determined by TWIMS, and structures of the parent drug ondansetron (1) and its isomeric metabolites.
Figure 4: Comparison of experimentally estimated CCS of five protein standards.
Figure 5: Conformational heterogeneity and dissociation of subunit I from ICL12 implies a mechanism for closing the H+ channel.
Figure 6: Polynucleotide structures as determined using a combination of molecular dynamic simulations and experimentally determined ATDs.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    D'Agostino, P. A. & Chenier, C. L. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1617–1624 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    McDaniel, E. W., Martin, D. W. & Barnes, W. S. Drift-tube mass spectrometer for studies of low-energy ion-molecule reactions. Rev. Sci. Instrum. 33, 2–7 (1962).

    CAS  Article  Google Scholar 

  3. 3

    Mason, E. A. & Schamp, H. W. Jr. Mobility of gaseous ions in weak electric fields. Ann. Phys. 4, 233–270 (1958).

    CAS  Article  Google Scholar 

  4. 4

    Creaser, C. S. et al. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129, 984–994 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Wyttenbach, T., Kemper, P. R. & Bowers, M. T. Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212, 13–23 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Harvey, S. R., MacPhee, C. E. & Barran, P. E. Ion mobility mass spectrometry for peptide analysis. Methods 54, 454–461 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Giles, K. et al. Applications of a travelling-wave based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Bush, M. F. et al. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Campuzano, I. et al. Structural characterization of drug-like compounds by ion mobility mass spectrometry: Comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal. Chem. 84, 1026–1033 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Bush, M. F., Campuzano, I. D. & Robinson, C. V. Ion mobility mass spectrometry of peptide ions: Effects of drift gas and calibration strategies. Anal. Chem. 84, 7124–7130 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Chawner, R. et al. QconCAT standard for calibration of ion mobility-mass spectrometry systems. J. Proteome Res. 11, 5564–5572 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Purves, R. W. & Guevremont, R. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 71, 2346–2357 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Canterbury, J. D., Yi, X., Hoopman, M. R. & MacCoss, M. J. Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics. Anal. Chem. 80, 6888–6897 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Shvartsburg, A. A., Danielson, W. F. & Smith, R. D. High-resolution differential ion mobility separations using helium-rich gases. Anal. Chem. 82, 2456–2462 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Shvartsburg, A. A. & Smith, R. D. Accelerated high-resolution differential ion mobility separations using hydrogen. Anal. Chem. 83, 9159–9166 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Shvartsburg, A. A. et al. High-definition differential ion mobility spectrometry with resolving power up to 500. J. Am. Soc. Mass Spectrom. 24, 109–114 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Knutson, E. O. & Whitby, K. T. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6, 443–451 (1975).

    Article  Google Scholar 

  18. 18

    Pomareda, V., Lopez-Vidal, S., Calvo, D., Pardo, A. & Marco, S. A novel differential mobility analyzer as a VOC detector and multivariate techniques for identification and quantification. Analyst 138, 3512–3521 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    de la Mora, J. F., de Juan, L., Eichler, T. & Rosell, J. Differential mobility analysis of molecular ions and nanometer particles. TRAC Trend. Anal. Chem. 17, 328–339 (1998).

    Article  Google Scholar 

  20. 20

    Rus, J. et al. IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems. Int. J. Mass Spectrom. 298, 30–40 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Creese, A. J. & Cooper, H. J. Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal. Chem. 84, 2597–2601 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Varesio, E., Le Blanc, J. C. Y. & Hopfgartner, G. Real-time 2D separation by LC x differential ion mobility hyphenated to mass spectrometry. Anal. Bioanal. Chem. 402, 2555–2564 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Howdle, M. D., Eckers, C., Laures, A. M-F. & Creaser, C. S. The effect of drift gas on the separation of active pharmaceutical ingredients and impurities by ion mobility-mass spectrometry. Int. J. Mass Spectrom. 298, 72–77 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Fernández-Maestre, R., Wu, C. & Hill, H. H. Jr. Using a buffer gas modifier to change separation selectivity in ion mobility spectrometry. Int. J. Mass Spectrom. 298, 2–9 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25

    Fernández-Maestre, R., Wu, C. & Hill, H. H. Jr. Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions. Rapid Commun. Mass Spectrom. 26, 2211–2223 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26

    Holness, H. K., Jamal, A., Mebel, A. & Almirall, J. R. Separation mechanism of chiral impurities, ephedrine and pseudoephedrin, found in amphetamine-type substances using achiral modifiers in the gas phase. Anal. Bioanal. Chem. 404, 2407–2416 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Howdle, M. D., Eckers, C., Laures, A. M-F. & Creaser, C. S. The use of shift reagents in ion mobility-mass spectrometry: Studies on the complexation of an active pharmaceutical ingredient with polyethylene glycol excipients. J. Am. Soc. Mass Spectrom. 20 (2009).

  28. 28

    Hilderbrand, A. E., Myung, S. & Clemmer, D. E. Exploring crown ethers as shift reagents for ion mobility spectrometry. Anal. Chem. 78, 6792–6800 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Bohrer, B. C. & Clemmer, D. E. Shift reagents for multidimensional ion mobility spectrometry-mass spectrometry analysis of complex peptide mixtures: evaluation of 18-Crown-6 Ether Complexes. Anal. Chem. 83, 5377–5385 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Kiss, A. & Heeren, R. M. A. Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal. Bioanal. Chem. 399, 2623–2634 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Stauber, J. et al. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 338–347 (2010).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Trim, P. J. et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal. Chem. 80, 8628–8634 (2008).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, K. S. Effects of travelling wave ion mobility separation on data independent acquisition in proteomics studies. J. Proteome Res. 12, 2323–2339 (2013).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Rodriguez-Suarez, E. et al. An ion mobility assisted data independent LC-MS strategy for the analysis of complex biological samples. Curr. Anal. Chem. 9, 199–211 (2013).

    CAS  Google Scholar 

  35. 35

    Parson, W. B. et al. Rapid analysis of isomeric exogenous metabolites by differential mobility spectrometry-mass spectrometry. Rapid Commun. Mass Spectrom. 25, 3382–3386 (2011).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Esquenazi, E., Daly, M., Bahrainwala, T., Gerwick, W. H. & Dorrestein, P. C. Ion mobility mass spectrometry enables the efficient detection and identification of halogenated natural products from cyanobacteria with minimal sample preparation. Bioorgan. Med. Chem. 19, 6639–6644 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Harry, E. L., Weston, D. J., Bristow, A. W. T., Wilson, I. D. & Creaser, C. S. An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. J. Chromatogr. B 871, 357–361 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Brownridge, P. et al. Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy. Proteomics 2011, 2957–2970 (2011).

    Article  CAS  Google Scholar 

  40. 40

    Saba, J., Bonneil, E., Pomiès, C., Eng, K. & Thibault, P. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/orbitrap mass spectrometer. J. Proteome Res. 8, 3355–3366 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Bridon, G., Bonneil, E., Muratore-Schroeder, Caron-Lizotte, O. & Thibault, P. Improvement of phosphoproteomic analysis using FAIMS and decision tree fragmentation. Application to the insulin signaling pathway in Drosophila melanogaster S2 cells. J. Proteome Res. 11, 927–940 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Ibrahim, Y. M., Shvartsburg, A. A., Smith, R. D. & Belov, M. E. Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal. Chem. 83, 5617–5623 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Cuyckens, F. et al. Identifying metabolite ions of peptide drugs in the presence of an in vivo matrix background. Bioanalysis 4, 595–604 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Blackburn, M. A. et al. Identification and subsequent removal of an interference by FAIMS in the bioanalysis of dianicline in animal plasma. Bioanalysis 3, 2119–2127 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Guddat, S., Thevis, M., Kapron, J., Thomas, A. & Schänzer, W. Application of FAIMS to anabolic androgenic steroids in sport drug testing. Drug Testing Anal. 1, 545–553 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Scarff, C. A., Thalassinos, K., Hilton, G. R. & Scrivens, J. H. Travelling wave ion mobility mass spectrometry studies of protein structure: Biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun. Mass Spectrom. 22, 3297–3304 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Gidden, J., Bushnell, J. E. & Bowers, M. T. Gas-phase conformations and folding energetics of oligonucleotides: dTG and dGT. J. Am. Chem. Soc. 123, 5610–5611 (2001).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Gidden, J. & Bowers, M. T. Gas-phase conformational and energetic properties of deprotonated dinucleotides. Eur. Phys. J. D 20, 409–419 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Wyttenbach, T., Grabenauer, M., Thalassinos, K., Scrivens, J. H. & Bowers, M. T. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures. J. Phys. Chem. B 114, 437–447 (2010).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Jenner, M. et al. Detection of a protein conformational equilibrium by electrospray ionisation-ion mobility-mass spectrometry. Angew. Chem. Int. Ed. 50, 8291–8294 (2011).

    CAS  Article  Google Scholar 

  51. 51

    Bereszczak, J. Z. et al. Structure, stability and dynamics of norovirus P domain derived protein complexes studied by native mass spectrometry. J. Struct. Biol. 177, 273–282 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Shi, H., Pierson, N. A., Valentine, S. J. & Clemmer, D. E. Conformation types of ubiquitin [M+8H]8+ ions from water:methanol solutions: Evidence for the N and A states in aqueous solution. J. Phys. Chem. B 116, 3344–3352 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Smith, D. P., Giles, K., Bateman, R. H., Radford, S. E. & Ashcroft, A. E. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 2180–2190 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Nabuchi, Y., Hirose, K. & Takayama, M. Ion mobility and collision-induced dissociation analysis of carbonic anhydrase 2. Anal. Chem. 82, 8890–8896 (2010).

    CAS  Article  Google Scholar 

  55. 55

    Hyung, S-J., Robinson, C. V. & Ruotolo, B. T. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem. Biol. 16, 382–390 (2009).

    CAS  Article  Google Scholar 

  56. 56

    Hopper, J. T. S. & Oldham, N. J. Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: The effect of ligand binding on conformational stability. J. Am. Soc. Mass Spectrom. 20, 1851–1858 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Smith, D. P., Radford, S. E. & Ashcroft, A. E. Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc. Natl Acad. Sci. USA 107, 6794–6798 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Beveridge, R., Chappuis, Q., MacPhee, C. & Barran, P. Mass spectrometry methods for intrinsically disordered proteins. Analyst 138, 32–42 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Uetrecht, C. et al. Stability and shape of hepatitis B virus capsids in vacuo. Angew. Chem. Int. Ed. 47, 6247–6251 (2008).

    CAS  Article  Google Scholar 

  60. 60

    Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Jurneczko, E., Kalapothakis, J., Campuzano, I. D. G., Morris, M. & Barran, P. E. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 8524–8531 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Wyttenbach, T., von Helden, G. & Bowers, M. T. Gas-phase conformation of biological molecules: Bradykinin. J. Am. Chem. Soc. 118, 8355–8364 (1996).

    CAS  Article  Google Scholar 

  63. 63

    Baumketner, A. et al. Amyloid β-protein monomer structure: A computational and experimental study. Protein Sci. 15, 420–428 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Dear, G. J. et al. Sites of metabolic substitution: Investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun. Mass Spectrom. 24, 3157–3162 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Cuyckens, F. et al. Product ion mobility as a promising tool for assignment of positional isomers of drug metabolites. Rapid Commun. Mass Spectrom. 25, 3497–3503 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66

    Wyttenbach, T., von Helden, G., Batka, J. J., Carlat, D. & Bowers, M. T. Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997).

    CAS  Article  Google Scholar 

  67. 67

    Shvartsburg, A. A. & Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996).

    CAS  Article  Google Scholar 

  68. 68

    Shvartsburg, A. A., Schatz, G. C. & Jarrold, M. F. Mobilities of carbon cluster ions: Critical importance of the molecular attractive potential. J. Chem. Phys. 108, 2416–2423 (1998).

    CAS  Article  Google Scholar 

  69. 69

    Jurneczko, E. & Barran, P. E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136, 20–28 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Bleiholder, C., Wyttenbach, T. & Bowers, M. T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. Int. J. Mass Spectrom. 308, 1–10 (2011).

    CAS  Article  Google Scholar 

  71. 71

    Bleiholder, C., Contreras, S., Do, T. D. & Bowers, M. T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (II). Model parameterization and definitions of empirical shape factors for proteins. Int. J. Mass Spectrom. 345–347, 89–96 (2013).

    Article  CAS  Google Scholar 

  72. 72

    Bleiholder, C., Contreras, S. & Bowers, M. T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross section (IV). Application to polypeptides. Int. J. Mass Spectrom. 354–355, 275–280 (2013).

    Article  CAS  Google Scholar 

  73. 73

    Wyttenbach, T., Bleiholder, C. & Bowers, M. T. Factors contributing to the collision cross section of polyatomic ions in the kilodalton to gigadalton range: Application to ion mobility measurements. Anal. Chem. 85, 2191–2199 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Hall, Z. & Robinson, C. V. Do charge state signatures guarantee protein conformations? J. Am. Soc. Mass Spectrom. 23, 1161–1168 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Berezovskaya, Y., Porrini, M. & Barran, P. E. The effect of salt on the conformations of three model proteins is revealed by variable temperature ion mobility mass spectrometry. Int. J. Mass Spectrom. 345, 8–18 (2013).

    Article  CAS  Google Scholar 

  76. 76

    Shvartsburg, A. A. & Smith, R. D. Separation of protein conformers by differential ion mobility in hydrogen-rich gases. Anal. Chem. 85, 6967–6973 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chem. 1, 326–331 (2009).

    CAS  Article  Google Scholar 

  78. 78

    Grabenauer, M. et al. Spermine binding to Parkinson's protein α-synuclein and its disease-related A30P and A53T mutants. J. Phys. Chem. B 112, 11147–11154 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Shimizu, A., Ohe, T. & Chiba, M. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry-mass spectrometry. Drug Metab. Dispos. 40, 1456–1459 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Baker, E. S. et al. Diastereomer assignment of an olefin-linked bis-paracyclophane by ion mobility mass spectrometry. J. Am. Chem. Soc. 126, 6255–6257 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Both, P. et al. Discrimination of epimeric glycans and glycopeptides using ion-mobility mass spectrometry and its potential for carbohydrate sequencing. Nature Chem. 6, 65–74 (2014).

    CAS  Article  Google Scholar 

  82. 82

    Lee, S. et al. Extracted fragment ion mobility distributions: A new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Florance, H. V. et al. Evidence for alpha-helices in the gas phase: A case study using melittin from honey bee venom. Analyst 136, 3446–3452 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Jarrold, M. F. Helices and sheets in vacuo. Phys. Chem. Chem. Phys. 9, 1659–1671 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Zilch, L. W., Kaleta, D. T., Kohtani, M., Krishnan, R. & Jarrold, M. F. Folding and unfolding of helix-turn-helix motifs in the gas phase. J. Am. Soc. Mass Spectrom. 18, 1239–1248 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    McLean, J. R. et al. Factors that influence helical preferences for singly charged gas-phase peptide ions: The effects of multiple potential charge-carrying sites. J. Phys. Chem. B 114, 809–816 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Albrieux, F. et al. Conformation of polyalanine and polyglycine dications in the gas phase: Insight from ion mobility spectrometry and replica-exchange molecular dynamics. J. Phys. Chem. A 114, 6888–6896 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Albrieux, F. et al. Structural preferences of gas-phase M2TMP monomers upon sequence variations. J. Phys. Chem. A 115, 4711–4718 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Wu, C., Klasmeier, J. & Hill, H. H. Atmospheric pressure ion mobility spectrometry of protonated and sodiated peptides. Rapid Commun. Mass Spectrom. 13, 1138–1142 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Liu, D. F. et al. Oxytocin-receptor binding: Why divalent metals are essential. J. Am. Chem. Soc. 127, 2024–2025 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Rožman, M. & Gaskell, S. J. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides. J. Mass Spectrom. 45, 1409–1415 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  92. 92

    Chen, L., Gao, Y. Q. & Russell, D. H. How alkali metal ion binding alters the conformation preferences of gramicidin A: A molecular dynamics and ion mobility study. J. Phys. Chem. A 116, 689–696 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Garcia, I. R., Giles, K., Bateman, R. H. & Gaskell, S. J. Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1781–1787 (2008).

    Article  CAS  Google Scholar 

  94. 94

    Polfer, N. C., Bohrer, B. C., Plasencia, M. D., Paizs, B. & Clemmer, D. E. On the dynamics of fragment isomerization in collision-induced dissociation of peptides. J. Phys. Chem. A 112, 1286–1293 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Saminathan, I. S. et al. The extent and effects of peptide sequence scrambling via formation of macrocyclic b ions in model proteins. J. Am. Soc. Mass Spectrom. 21, 2085–2094 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Chawner, R., Gaskell, S. J. & Eyers, C. E. Proposal for a common nomenclature for peptide fragment ions generated following sequence scrambling during collision-induced dissociation. Rapid Commun. Mass Spectrom. 26, 205–206 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Moss, C. L. et al. Assigning structures to gas-phase peptide cations and cation-radicals. An infrared multiphoton dissociation, ion mobility, electron transfer, and computational study of a histidine peptide ion. J. Phys. Chem. B 116, 3445–3456 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    van den Heuvel, R. H. H. & Heck, A. J. R. Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Kaddis, C. S. & Loo, J. A. Native protein MS and ion mobility: Large flying proteins with ESI. Anal. Chem. 79, 1778–1784 (2007).

    CAS  Article  Google Scholar 

  100. 100

    Heck, A. J. R. Native mass spectrometry: A bridge between interactomics and structural biology. Nature Methods 5, 927–933 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Kondrat, F. D. L., Kowald, G. R., Scarff, C. A., Scrivens, J. H. & Blindauer, C. A. Resolution of a paradox by native mass spectrometry: Facile occupation of all four metal binding sites in the dimeric zinc sensor SmtB. Chem. Commun. 49, 813–815 (2013).

    CAS  Article  Google Scholar 

  102. 102

    Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. BBA-Proteins Proteom. 1835, 1239–1256 (2013).

    Article  CAS  Google Scholar 

  103. 103

    Hall, Z., Politis, A., Bush, M. F., Smith, L. J. & Robinson, C. V. Charge-state dependent compaction and dissociation of protein complexes: Insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Raschke, T. M. Water structure and interactions with protein surfaces. Curr. Opin. Struc. Biol. 16, 152–159 (2006).

    CAS  Article  Google Scholar 

  105. 105

    Wolynes, P. G. Biomolecular folding in vacuo!!!(?). Proc. Natl Acad. Sci. USA 92, 2426–2427 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Loo, J. A. et al. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J. Am. Soc. Mass Spectrom. 16, 998–1008 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Sharon, M. et al. 20S proteasomes have the potential to keep substrates in store for continual degradation. J. Biol. Chem. 281, 9569–9575 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Ruotolo, B. T. & Robinson, C. V. Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 10, 402–408 (2006).

    CAS  Article  Google Scholar 

  109. 109

    van Duijn, E., Barendregt, A., Synowsky, S., Versluis, C. & Heck, A. J. R. Chaperonin complexes monitored by ion mobility mass spectrometry. J. Am. Chem. Soc. 131, 1452 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Rodriguez-Cruz, S. E., Klassen, J. S. & Williams, E. R. Hydration of gas-phase Gramicidin S (M + 2H)2+ ions formed by electrospray: The transition from solution to gas-phase structure. J. Am. Soc. Mass Spectrom. 8, 565–568 (1997).

    CAS  Article  Google Scholar 

  111. 111

    Woenckhaus, J., Hudgins, R. R. & Jarrold, M. F. Hydration of gas-phase proteins: A special hydration site on gas-phase BPTI. J. Am. Chem. Soc. 119, 9586–9587 (1997).

    CAS  Article  Google Scholar 

  112. 112

    Fye, J. L., Woenckhaus, J. & Jarrold, M. F. Hydration of folded and unfolded gas-phase proteins: Saturation of cytochrome c and apomyoglobin. J. Am. Chem. Soc. 120, 1327–1328 (1998).

    CAS  Article  Google Scholar 

  113. 113

    Rodriguez-Cruz, S. E., Klassen, J. S. & Williams, E. R. Hydration of gas-phase ions formed by electrospray ionization. J. Am. Soc. Mass Spectrom. 10, 958–968 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Jarrold, M. F. Peptides and proteins in the vapor phase. Annu. Rev. Phys. Chem. 51, 179–207 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    Gao, B., Wyttenbach, T. & Bowers, M. T. Protonated arginine and protonated lysine: Hydration and its effect on the stability of salt-bridge structures. J. Phys. Chem. B 113, 9995–10000 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Kantardjieff, K. A. & Rupp, B. Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA and protein-nucleic acid complex crystals. Protein Sci. 12, 1865–1871 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Hogan, C. J., Ruotolo, B. T., Robinson, C. V. & de la Mora, J. F. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex. J. Phys. Chem. B 115, 3614–3621 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Breuker, K. & McLafferty, F. W. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s. Proc. Natl Acad. Sci. USA 105, 18145–18152 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119

    Zhao, Q. et al. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions. J. Am. Soc. Mass Spectrom. 21, 1208–1217 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Badman, E. R., Myung, S. & Clemmer, D. E. Evidence for unfolding and refolding of gas-phase cytochrome c ions in a Paul trap. J. Am. Soc. Mass Spectrom. 16, 1496–1497 (2005).

    Article  CAS  Google Scholar 

  121. 121

    Wyttenbach, T. & Bowers, M. T. Structural stability from solution to the gas phase: Native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J. Phys. Chem. B 115, 12266–12275 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Lorenzi, M. et al. Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone. PLoS ONE 7, e49523 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Wang, S. C. et al. Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing. J. Am. Chem. Soc. 132, 15468–15470 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Boryski, A. J. & Robinson, C. V. The 'sticky business' of cleaning gas-phase membrane proteins: A detergent oriented perspective. Phys. Chem. Chem. Phys. 14, 14439–14449 (2012).

    Article  CAS  Google Scholar 

  125. 125

    Leney, A. C., McMorran, L. M., Radford, S. E. & Ashcroft, A. E. Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84, 9841–9847 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Ashcroft, A. E. Mass spectrometry and the amyloid problem - How far can we go in the gas phase? J. Am. Soc. Mass Spectrom. 21, 1087–1096 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Smith, D. P., Woods, L. W., Radford, S. E. & Ashcroft, A. E. Structure and dynamics of oligomeric intermediates in β2-microglobulin self-assembly. Biophys. J. 101, 1238–1247 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Bernstein, S. L. et al. Amyloid β-protein: Monomer structure and early aggregation states of Aβ42 and is Pro19 alloform. J. Am. Chem. Soc. 127, 2075–2084 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Gessel, M. M. et al. Aβ(39–42) modulates Aβ oligomerization but not fibril formation. Biochemistry 51, 108–117 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Zheng, X. et al. Z-Phe-Ala-diazomethylketone (PADK) disrupts and remodels early oligomer states of Alzheimer diseases Aβ42 protein. J. Biol. Chem. 287, 6084–6088 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Amijee, H. et al. The N-methylated peptide SEN304 powerfully inhibits Aβ(1–42) toxicity by perturbing oligomer formation. Biochemistry 51, 8338–8352 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Hernandez, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protoc. 2, 715–726 (2007).

    CAS  Article  Google Scholar 

  133. 133

    Zhou, M. et al. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334, 380–385 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Baker, E. S., Dupuis, N. F. & Bowers, M. T. DNA hairpin, pseudoknot, and cruciform stability in a solvent-free environment. J. Phys. Chem. B 113, 1722–1727 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135

    Chan, Y. T. et al. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 133, 11967–11976 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Larriba, C. & de la Mora, J. F. The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B 116, 593–598 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137

    Arcella, A. et al. Structure of triplex DNA in the gas phase. J. Am. Chem. Soc. 134, 6596–6606 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Nagesh, N. & Chatterji, D. Ammonium ion at low concentration stabilizes the G-quadruplex formation by telomeric sequence. J. Biochem. Bioph. Meth. 30, 1–8 (1995).

    CAS  Article  Google Scholar 

  139. 139

    Baker, E.S., Bernstein, S.L., Gabelica, V., De Pauw, E. & Bowers, M.T. G-quadruplexes in telomeric repeats are conserved in a solvent-free environment. Int. J. Mass Spectrom. 253, 225–237 (2006).

    CAS  Article  Google Scholar 

  140. 140

    Rosu, F., Gabelica, V., Poncelet, H. & De Pauw, E. Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res. 38, 5217–5225 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Wyttenbach, T., von Helden, G. & Bowers, M. T. Conformations of alkali ion cationized polyethers in the gas phase: Polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl] pimelate. Int. J. Mass Spectrom. Ion Processes 165–166, 377–390 (1997).

    Article  Google Scholar 

  142. 142

    von Helden, G., Wyttenbach, T. & Bowers, M. T. Conformation of macromolecules in the gas phase: Use of matrix-assisted laser desorption methods in ion chromatography. Science 267, 1483–1485 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    De Winter, J. et al. Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem. Eur. J. 17, 9738–9745 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Alsharaeh, E. H. & El-Shall, M. S. Ion mobility study of the mechanism of the gas phase thermal polymerization of styrene and the structures of the early oligomers. Polymer 52, 5551–5559 (2011).

    CAS  Article  Google Scholar 

  145. 145

    Ujma, J. et al. Shapes of supramolecular cages by ion mobility mass spectrometry. Chem. Commun. 48, 4423–4425 (2012).

    CAS  Article  Google Scholar 

  146. 146

    Brocker, E. R., Anderson, S. E., Northrop, B. H., Stang, P. J. & Bowers, M. T. Structures of metallosupramolecular coordination assemblies can be obtained by ion mobility spectrometry-mass spectrometry. J. Am. Chem. Soc. 132, 13486–13494 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147

    Lalli, P. M. et al. Resolution of isomeric multi-ruthenated porphyrins by travelling wave ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 26, 263–268 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Li, X. et al. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. Anal. Chem. 83, 6667–6674 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149

    Zhong, Y., Hyung, S.-J. & Ruotolo, B. T. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136, 3534–3541 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Li, H., Bendiak, B., Siems, W. F., Gang, D. R. & Hill, H. H. Jr. Carbohydrate structure characterisation by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 85, 2760–2769 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Baker, E. S. et al. Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152

    Giles, K., Williams, J. P. & Campuzano, I. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Merenbloom, S. I., Glaskin, R. S., Henson, Z. B. & Clemmer, D. E. High-resolution ion cyclotron mobility spectrometry. Anal. Chem. 81, 1482–1487 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Glaskin, R. S., Valentine, S. J. & Clemmer, D. E. A scanning frequency mode for ion cyclotron mobility spectrometry. Anal. Chem. 82, 8266–8271 (2010).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Glaskin, R. S., Ewing, M. A. & Clemmer, D. E. Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal. Chem. 85, 7003–7008 (2013).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Shaffer, S. A. et al. A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1813–1817 (1997).

    CAS  Article  Google Scholar 

  157. 157

    Kemper, P. R., Dupuis, N. F. & Bowers, M. T. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287, 46–57 (2009).

    CAS  Article  Google Scholar 

  158. 158

    Ranjbar, B. & Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses - A review. Chem. Biol. Drug Des. 74, 101–120 (2009).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Roberts, G. & Lian, L. Y. Protein NMR Spectroscopy: Practical Techniques and Applications (Wiley, 2011).

    Google Scholar 

  160. 160

    Murray, K. K. et al. Definitions of terms relating to mass spectrometry (IUPAC recommendations 2013). Pure Appl. Chem. 85, 1515–1609 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Biotechnology and Biological Sciences Research Council (BB/H007113/1, BB/G009058/1, BB/F00561X/1) and the European Commission's Seventh Framework Programme (FP7), which funded GlycoBioM. C.G. is supported by a BBSRC doctoral training grant. Finally, we thank P. Eyers for a critical reading of the review.

Author information

Affiliations

Authors

Contributions

F.L., S.W.H. and C.J.G. contributed equally to this paper.

Corresponding author

Correspondence to Claire E. Eyers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lanucara, F., Holman, S., Gray, C. et al. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chem 6, 281–294 (2014). https://doi.org/10.1038/nchem.1889

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing