Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induced-fit catalysis of corannulene bowl-to-bowl inversion

Abstract

Stereoelectronic complementarity between the active site of an enzyme and the transition state of a reaction is one of the tenets of enzyme catalysis. This report illustrates the principles of enzyme catalysis (first proposed by Pauling and Jencks) through a well-defined model system that has been fully characterized crystallographically, computationally and kinetically. Catalysis of the bowl-to-bowl inversion processes that pertain to corannulene is achieved by combining ground-state destabilization and transition-state stabilization within the cavity of an extended tetracationic cyclophane. This synthetic receptor fulfils a role reminiscent of a catalytic antibody by stabilizing the planar transition state for the bowl-to-bowl inversion of (ethyl)corannulene (which accelerates this process by a factor of ten at room temperature) by an induced-fit mechanism first formulated by Koshland.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural formulae and solid-state structures.
Figure 2: Ground state versus transition state.
Figure 3: NMR spectroscopy with corannulene-d10.
Figure 4: NMR spectroscopy with ethylcorannulene.
Figure 5: Energy profile.

References

  1. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    CAS  Article  PubMed  Google Scholar 

  2. Jencks, W. P. Catalysis in Chemistry and Enzymology (McGraw-Hill, 1969).

    Google Scholar 

  3. Tramontano, A., Janda, K. D. & Lerner, R. A. Catalytic antibodies. Science 234, 1566–1570 (1986).

    CAS  PubMed  Article  Google Scholar 

  4. Pollack, S. J., Jacobs, J. W. & Schultz, P. G. Selective chemical catalysis by an antibody. Science 234, 1570–1573 (1986).

    CAS  PubMed  Article  Google Scholar 

  5. Janda, K. D., Schloeder, D. & Benkovic, S. J. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241, 1188–1191 (1988).

    CAS  PubMed  Article  Google Scholar 

  6. Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S. J. & Lerner, R. A. Linkage of recognition and replication functions by assembling combinatorial antibody fab libraries along phage surfaces. Proc. Natl Acad. Sci. USA 88, 4363–4366 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Lerner, R. A., Benkovic, S. J. & Schultz, P. G. At the crossroads of chemistry and immunology: catalytic antibodies. Science 252, 659–667 (1991).

    CAS  PubMed  Article  Google Scholar 

  8. Benkovic, S. J. Catalytic antibodies. Annu. Rev. Biochem. 61, 29–54 (1992).

    CAS  PubMed  Article  Google Scholar 

  9. Janda, K. D., Shevlin, C. G. & Lerner, R. A. Antibody catalysis of a disfavored chemical transformation. Science 259, 490–493 (1993).

    CAS  PubMed  Article  Google Scholar 

  10. Janda, K. D. et al. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl Acad. Sci. USA 91, 2532–2536 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Tawfik, D. S., Eshhar, Z. & Green, B. S. Catalytic antibodies: a critical assessment. Mol. Biotechnol. 1, 87–103 (1994).

    CAS  PubMed  Article  Google Scholar 

  12. Stewart, J. D. & Benkovic, S. J. Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature 375, 388–391 (1995).

    CAS  PubMed  Article  Google Scholar 

  13. Schultz, P. G. & Lerner, R. A. From molecular diversity to catalysis: lessons from the immune system. Science 269, 1835–1842 (1995).

    CAS  PubMed  Article  Google Scholar 

  14. Wagner, J., Lerner, R. A. & Barbas, C. F. III . Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270, 1797–1800 (1995).

    CAS  PubMed  Article  Google Scholar 

  15. Janda, K. D. et al. Chemical selection for catalysis in combinatorial antibody libraries. Science 275, 945–948 (1997).

    CAS  PubMed  Article  Google Scholar 

  16. Hoffmann, T. et al. Aldolase antibodies of remarkable scope. J. Am. Chem. Soc. 120, 2768–2779 (1998).

    CAS  Article  Google Scholar 

  17. Wentworth, P. Jr & Janda, K. D. Catalytic antibodies. Cell Biochem. Biophys. 35, 63–87 (2001).

    CAS  PubMed  Article  Google Scholar 

  18. Hilvert, D., Hill, K. W., Nared, K. D. & Auditor, M-T. M. Antibody catalysis of the Diels–Alder reaction. J. Am. Chem. Soc. 111, 9261–9262 (1989).

    CAS  Article  Google Scholar 

  19. Braisted, A. C. & Schultz, P. G. An antibody-catalyzed bimolecular Diels–Alder reaction. J. Am. Chem. Soc. 112, 7430–7431 (1990).

    CAS  Article  Google Scholar 

  20. Gouverneur, V. E. et al. Control of the exo and endo pathways of the Diels–Alder reaction by antibody catalysis. Science 262, 204–208 (1993).

    CAS  PubMed  Article  Google Scholar 

  21. Romesberg, F. E., Spiller, B., Schultz, P. G. & Stevens, R. C. Immunological origins of binding and catalysis in a Diels–Alderase antibody. Science 279, 1929–1933 (1998).

    CAS  PubMed  Article  Google Scholar 

  22. Heine, A. et al. An antibody exo Diels–Alderase inhibitor complex at 1.95 angstrom resolution. Science 279, 1934–1940 (1998).

    CAS  PubMed  Article  Google Scholar 

  23. Serganov, A. et al. Structural basis for Diels–Alder ribozyme-catalyzed carbon–carbon bond formation. Nature Struct. Mol. Biol. 12, 218–224 (2005).

    CAS  Article  Google Scholar 

  24. Barton, W. E. & Lawton, R. G. Dibenzo[ghi,mno]fluoranthene. J. Am. Chem. Soc. 88, 380–381 (1966).

    Article  Google Scholar 

  25. Barth, W. E. & Lawton, R. G. Synthesis of corannulene. J. Am. Chem. Soc. 93, 1730–1745 (1971).

    Article  Google Scholar 

  26. Schulman, J. M., Peck, R. C. & Disch, R. L. Ab initio heats of formation of medium-sized hydrocarbons. 11. The benzenoid aromatics. J. Am. Chem. Soc. 111, 5675–5680 (1989).

    CAS  Article  Google Scholar 

  27. Scott, L. T., Hashemi, M. M. & Bratcher, M. S. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114, 1920–1921 (1992).

    CAS  Article  Google Scholar 

  28. Borchardt, A., Fuchicello, A., Kilway, K. V., Baldridge, K. K. & Siegel, J. S. Synthesis and dynamics of the corannulene nucleus. J. Am. Chem. Soc. 114, 1921–1923 (1992).

    CAS  Article  Google Scholar 

  29. Disch, R. L. & Schulman, J. M. Theoretical studies of the inversion barrier in corannulenes. J. Am. Chem. Soc. 116, 1533–1536 (1994).

    CAS  Article  Google Scholar 

  30. Sygula, A. & Rabideau, P. W. Bowl-to-bowl inversion in polynuclear aromatic hydrocarbons with curved surfaces: an ab initio study. Chem. Commun. 1497–1499 (1994).

  31. Sygula, A. & Rabideau, P. W. Structure and inversion barriers of corannulene, its dianion and tetraanion. An ab initio study. J. Mol. Struct. Theochem. 333, 215–226 (1995).

    CAS  Article  Google Scholar 

  32. Seiders, T. J., Baldridge, K. K. & Siegel, J. S. Synthesis and characterization of the first corannulene cyclophane. J. Am. Chem. Soc. 118, 2754–2755 (1996).

    CAS  Article  Google Scholar 

  33. Rabideau, P. W. & Sygula, A. Buckybowls: polynuclear aromatic hydrocarbons related to the buckminsterfullerene surface. Acc. Chem. Res. 29, 235–242 (1996).

    CAS  Article  Google Scholar 

  34. Scott L. T. et al. Corannulene: a three-step synthesis. J. Am. Chem. Soc. 119, 10963–10968 (1997).

    CAS  Article  Google Scholar 

  35. Seiders, T. J., Elliot, E. L., Grube, G. H. & Siegel, J. S. Synthesis of corannulene and alkyl derivatives of corannulene. J. Am. Chem. Soc. 121, 7804–7813 (1999).

    CAS  Article  Google Scholar 

  36. Biedermann, P. U., Pogodin, S. & Agranat, I. Inversion barrier of corannulene. A benchmark for bowl-to-bowl inversions in fullerene fragments. J. Org. Chem. 64, 3655–3662 (1999).

    CAS  PubMed  Article  Google Scholar 

  37. Marcinow, Z., Sygula, A., Ellern, A. & Rabideau, P. W. Lowering inversion barriers of buckybowls by benzannelation of the rim: synthesis and crystal and molecular structure of 1,2-dihydrocyclopenta[b,c]dibenzo[g,m]corannulene. Org. Lett. 3, 3527–3529 (2001).

    CAS  PubMed  Article  Google Scholar 

  38. Seiders, T. J., Baldridge, K. K., Grube, G. H. & Siegel, J. S. Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: combined experimental and quantum mechanical analysis. J. Am. Chem. Soc. 123, 517–525 (2001).

    CAS  PubMed  Article  Google Scholar 

  39. Wu, Y-T. & Siegel, J. S. Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. Chem. Rev. 106, 4843–4867 (2006).

    CAS  PubMed  Article  Google Scholar 

  40. Osuna, S. & Houk, K. N. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers. Chem. Eur. J. 15, 13219–13231 (2009).

    CAS  PubMed  Article  Google Scholar 

  41. Butterfield, A. M., Gilomen, B. & Siegel, J. S. Kilogram-scale production of corannulene. Org. Process Res. Dev. 16, 664–676 (2012).

    CAS  Article  Google Scholar 

  42. Hanson, J. C. & Nordman, C. E. The crystal and molecular structure of corannulene, C20H10 . Acta Crystallogr. B B32, 1147–1153 (1976).

    Article  Google Scholar 

  43. Barnes, J. C. et al. Exbox: a polycyclic aromatic hydrocarbon scavenger. J. Am. Chem. Soc. 135, 183–192 (2013).

    CAS  PubMed  Article  Google Scholar 

  44. Koshland, D. E. Jr. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA 44, 98–104 (1958).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Koshland, D. E. Jr. Correlation of structure and function in enzyme action. Science 142, 1533–1541 (1963).

    CAS  PubMed  Article  Google Scholar 

  46. Koshland, D. E. Jr. The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed. 33, 2375–2378 (1994).

    Article  Google Scholar 

  47. Schmidt, M. et al. General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993).

    CAS  Article  Google Scholar 

  48. Frisch, M. J. et al. Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford, Connecticut, 2009).

  49. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Article  Google Scholar 

  50. Peverati, R. & Baldridge, K. K. Implementation and performance of DFT-D with respect to basis set and functional for study of dispersion interactions in nanoscale aromatic hydrocarbons. J. Chem. Theor. Comput. 4, 2030–2048 (2008).

    CAS  Article  Google Scholar 

  51. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Article  Google Scholar 

  52. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Article  Google Scholar 

  53. Klamt, A. & Schürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 5, 799–805 (1993).

    Article  Google Scholar 

  54. Baldridge, K. K. & Klamt, A. First principles implementation of solvent effects without outlying charge error. J. Chem. Phys. 106, 6622–6633 (1997).

    Article  Google Scholar 

  55. Klamt, A., Jonas, V., Bürger, T. & Lohrenz, C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. 102, 5074–5085 (1998).

    CAS  Article  Google Scholar 

  56. Baldridge, K. K. & Greenberg, J. P. Qmview: a computational chemistry three-dimensional visualization tool at the interface between molecules and mankind. J. Mol. Graph 13, 63–66 (1995).

    CAS  PubMed  Article  Google Scholar 

  57. WebMO, http://www.webmo.net/index.html.

  58. Toyota, S. et al. Tetranuclear copper(I)-biphenanthroline gridwork: violation of the principle of maximal donor coordination caused by intercalation and CH-to-N forces. Angew. Chem. Int. Ed. 40, 751–754 (2001).

    CAS  Article  Google Scholar 

  59. Baldridge, K. K., Cozzi, F. & Siegel, J. S. Basicity of (2,6-pyridino)paracyclophanes: lone pair–p, cation–p, and solvation effects. Angew. Chem. Int. Ed. 51, 2903–2906 (2012).

    CAS  Article  Google Scholar 

  60. Duttwyler, S., Butterfield, A. M. & Siegel, J. S. Arenium acid catalyzed deuteration of aromatic hydrocarbons. J. Org. Chem. 78, 2134–2138 (2013).

    CAS  PubMed  Article  Google Scholar 

  61. Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    CAS  Article  PubMed  Google Scholar 

  62. Bain, A. D., Rex, D. M. & Smith, R. N. Fitting dynamic NMR lineshapes. Magn. Reson. Chem. 39, 122–126 (2001).

    CAS  Article  Google Scholar 

  63. Sutherland, I. O. The investigation of the kinetics of conformational changes by nuclear magnetic resonance spectroscopy. Annu. Rep. NMR Spectrosc. 4, 71–235 (1971).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Stuparu for synthesizing bromocorannulene and C. L. Stern for performing the X-ray crystallographic analysis. This research is part of the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdul-Aziz City for Science and Technology (KACST) and Northwestern University (NU) (Project 34-947). The authors would like to thank both KACST and NU for their continued support of this research. We also acknowledge support from the World Class University Program (R-31-2008-000-10055-0) in Korea. M.J. gratefully acknowledges The Netherlands Organisation for Scientific Research and the Marie Curie Cofund Action (Rubicon Fellowship). N.L.S. and E.J.D. are supported by a Graduate Research Fellowship from the National Science Foundation. J.C.B. is supported by a National Defense Science and Engineering Graduate Fellowship from the Department of Defense and gratefully acknowledges receipt of a Ryan Fellowship from the NU International Institute for Nanotechnology. K.K.B. and J.S.S. gratefully acknowledge the Swiss National Science Foundation, the Qian Ren Scholar Program of China and the Synergetic Innovation Center of Chemical Science and Engineering (Tianjin).

Author information

Authors and Affiliations

Authors

Contributions

M.J., N.L.S., J.C.B., J.F.S. and J.S.S. conceived the project and prepared the manuscript. M.J., J.C.B., A.M.B. and E.J.D. synthesized the different molecules studied in this work. M.J. and N.L.S. carried out NMR studies. K.K.B. performed DFT calculations. M.J., N.L.S., J.C.B., K.K.B., J.F.S. and J.S.S. investigated the bowl-to-bowl inversion process.

Corresponding author

Correspondence to Jay S. Siegel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4816 kb)

Supplementary information

Crystallographic data for compound corannulene ExBox•4PF6(MeCN)7 (CIF 2380 kb)

Supplementary information

Supplementary pdb file for the optimized geometry (B97D/Def2-TZVPP) of the ground state of corannulene-ExBox4+ complex in the gas phase. (PDB 9 kb)

Supplementary information

Supplementary pdb file for the optimized geometry (B97D/Def2-TZVPP) of the ground state of corannulene-ExBox4+ complex in Me2CO. (PDB 9 kb)

Supplementary information

Supplementary pdb file for the optimized geometry (B97D/Def2-TZVPP) of the transition state of corannulene-ExBox4+ complex in the gas phase. (PDB 9 kb)

Supplementary information

Supplementary pdb file for the optimized geometry (B97D/Def2-TZVPP) of the transition state of corannulene-ExBox4+ complex in Me2CO (PDB 9 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Juríček, M., Strutt, N., Barnes, J. et al. Induced-fit catalysis of corannulene bowl-to-bowl inversion. Nature Chem 6, 222–228 (2014). https://doi.org/10.1038/nchem.1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1842

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing