Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hollow nanotubular toroidal polymer microrings

Subjects

Abstract

Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of polymer microrings.
Figure 2: Monitoring the formation of microrings by SEM and TEM and a proposed formation mechanism.
Figure 3: Theoretical and experimental distribution of radius R for the produced rings.
Figure 4: Synthesis of microring 5 using another rectangular monomer 4 and crosslinker 2.
Figure 5: Encapsulation of C60 in microring 3 and decoration of microring 3 with Ag nanoparticles.

Similar content being viewed by others

References

  1. Antonietti, M. Self-organization of functional polymers. Nature Mater. 2, 9–10 (2003).

    Article  CAS  Google Scholar 

  2. Matyjaszewski, K. Architecturally complex polymers with controlled heterogeneity. Science 333, 1104–1105 (2011).

    Article  CAS  Google Scholar 

  3. Bucknall, D. G. & Anderson, H. L. Polymers get organized. Science 302, 1904–1905 (2003).

    Article  CAS  Google Scholar 

  4. Park, I-S. et al. Designer nanorings with functional cavities from self-assembling β-sheet peptides. Chem. Asian J. 6, 452–458 (2011).

    Article  CAS  Google Scholar 

  5. Yagai, S. et al. Self-organization of hydrogen-bonding naphthalene chromophores into J-type nanorings and H-type nanorods: impact of regioisomerism. Angew. Chem. Int. Ed. 51, 6643–6647 (2012).

    Article  CAS  Google Scholar 

  6. Chandrasekhar, N. & Chandrasekar, R. Reversibly shape-shifting organic optical waveguides: formation of organic nanorings, nanotubes, and nanosheets. Angew. Chem. Int. Ed. 51, 3556–3561 (2012).

    Article  CAS  Google Scholar 

  7. Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).

    Article  CAS  Google Scholar 

  8. Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    Article  CAS  Google Scholar 

  9. Schenning, A. P. H. J., Benneker, F. B. G., Geurts, H. P. M., Liu, X. Y. & Nolte, R. J. M. Porphyrin wheels. J. Am. Chem. Soc. 118, 8549–8552 (1996).

    Article  CAS  Google Scholar 

  10. Takazawa, K. Micrometer-sized rings self-assembled from thiacyanine dye molecules and their waveguiding properties. Chem. Mater. 19, 5293–5301 (2007).

    Article  CAS  Google Scholar 

  11. Carroll, G. T., Jongejan, M. G. M., Pijper, D. & Feringa, B. L. Spontaneous generation and patterning of chiral polymeric surface toroids. Chem. Sci. 1, 469–472 (2010).

    Article  CAS  Google Scholar 

  12. Schappacher, M. & Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 319, 1512–1515 (2008).

    Article  CAS  Google Scholar 

  13. Schappacher, M. & Deffieux, A. Imaging of catenated, figure-of-eight, and trefoil knot polymer rings. Angew. Chem. Int. Ed. 48, 5930–5933 (2009).

    Article  CAS  Google Scholar 

  14. Schappacher, M. & Deffieux, A. Atomic force microscopy imaging and dilute solution properties of cyclic and linear polystyrene combs. J. Am. Chem. Soc. 130, 14684–14689 (2008).

    Article  CAS  Google Scholar 

  15. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An ‘endless’ route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  Google Scholar 

  16. Boydston, A. J., Holcombe, T. W., Unruh, D. A., Fréchet, J. M. J. & Grubbs, R. H. A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer. J. Am. Chem. Soc. 131, 5388–5389 (2009).

    Article  CAS  Google Scholar 

  17. Xia, Y., Boydston, A. J. & Grubbs, R. H. Synthesis and direct imaging of ultrahigh molecular weight cyclic brush polymers. Angew. Chem. Int. Ed. 50, 5882–5885 (2011).

    Article  CAS  Google Scholar 

  18. Zhang, K., Lackey, M. A., Wu, Y. & Tew, G. N. Universal cyclic polymer templates. J. Am. Chem. Soc. 133, 6906–6909 (2011).

    Article  CAS  Google Scholar 

  19. Alexander, L., Dhaliwal, K., Simpson, J. & Bradley, M. Dunking doughnuts into cells—selective cellular translocation and in vivo analysis of polymeric micro-doughnuts. Chem. Commun. 44, 3507–3509 (2008).

    Article  Google Scholar 

  20. Hud, N. V. & Vilfan, I. D. Toroidal DNA condensates: unraveling the fine structure and the role of nucleation in determining size. Annu. Rev. Biophys. Biomol. Struct. 34, 295–318 (2005).

    Article  CAS  Google Scholar 

  21. Zhou, W., Bai, X., Wang, E. & Xie, S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 21, 4565–4583 (2009).

    Article  CAS  Google Scholar 

  22. Martel, R., Shea, H. R. & Avouris, P. Rings of single-walled carbon nanotubes. Nature 398, 299 (1999).

    Article  CAS  Google Scholar 

  23. Sano, M., Kamino, A., Okamura, J. & Shinkai, S. Ring closure of carbon nanotubes. Science 293, 1299–1301 (2001).

    Article  CAS  Google Scholar 

  24. Song, L. et al. Large-scale synthesis of rings of bundled single-walled carbon nanotubes by floating chemical vapor deposition. Adv. Mater. 18, 1817–1821 (2006).

    Article  CAS  Google Scholar 

  25. Kim, D. et al. Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface. Angew. Chem. Int. Ed. 46, 3471–3474 (2007).

    Article  CAS  Google Scholar 

  26. Kim, E. et al. Solvent-responsive polymer nanocapsules with controlled permeability: encapsulation and release of a fluorescent dye by swelling and deswelling. Chem. Commun. 45, 1472–1474 (2009).

    Article  Google Scholar 

  27. Kim, E. et al. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angew. Chem. Int. Ed. 49, 4405–4408 (2010).

    Article  CAS  Google Scholar 

  28. Kim, D. et al. Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. J. Am. Chem. Soc. 132, 9908–9919 (2010).

    Article  CAS  Google Scholar 

  29. Hota, R. et al. Self-assembled, covalently linked, hollow phthalocyanine nanospheres. Chem. Sci. 4, 339–344 (2013).

    Article  CAS  Google Scholar 

  30. Balasubramanian, R., Kalaitzis, Z. M. & Cao, W. Solvent dependent morphologies in thiol-ene photopolymerization: a facile route to the synthesis of resorcinarene nanocapsules. J. Mater. Chem. 20, 6539–6543 (2010).

    Article  CAS  Google Scholar 

  31. Baek, K. et al. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. J. Am. Chem. Soc. 135, 6523–6528 (2013).

    Article  CAS  Google Scholar 

  32. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  33. Balasubramanian, R., Prayakarao, S., Han, S. & Cao, W. Tunable gold nanostructures with nanocapsules as template reaction vessels. RSC Adv. 2, 11668–11671 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS; CA1303) and the World Class University Project (R31–2008–000–10059–0) in Korea. W.S. acknowledges support from the Korea Research Foundation (NRF-2013R1A1A2008900) and the Brain–Korea 21 Program. C.G.P. acknowledges support from POSCO through the Korean Steel NanoFusion Program. The authors thank J.M. Kim, Z. Hassan and D. Shetty for discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and J.L. conceived and designed the project. J.L. carried out most of the experimental work. K.B. and R.N. provided invaluable guidance. Y.H.K. provided expertise with NMR analysis. G.Y., N.L. and C.G.P. performed the TEM experiments. M.K. and W.S. performed theoretical studies of the formation of the microrings. K.K., W.S., R.N., K.B. and J.L. wrote the manuscript.

Corresponding authors

Correspondence to Wokyung Sung or Kimoon Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Baek, K., Kim, M. et al. Hollow nanotubular toroidal polymer microrings. Nature Chem 6, 97–103 (2014). https://doi.org/10.1038/nchem.1833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing