Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic relaxation pathways in lanthanide single-molecule magnets

Abstract

Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N23− radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of [Dy4K2O(OtBu)12] (3); compounds 15 are isostructural.
Figure 2: Magnetic measurements on {Dy4K2} (3) and Dy in {Y4K2} Dy@7.
Figure 3: Low-lying electronic structure for 3 and 6.
Figure 4: Single-crystal measurements of M(H) measured on a micro-SQUID array.

Similar content being viewed by others

References

  1. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S-Y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  CAS  Google Scholar 

  2. Takamatsu, S., Ishikawa, T., Koshihara, S-Y. & Ishikawa, N. Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg. Chem. 46, 7250–7252 (2007).

    Article  CAS  Google Scholar 

  3. AlDamen, M. A. et al. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem. 48, 3467–3479 (2009).

    Article  CAS  Google Scholar 

  4. Habib, F. et al. Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem. Sci. 3, 2158–2164 (2012).

    Article  CAS  Google Scholar 

  5. Woodruff, D. N., Winpenny, R. E. P. & Layfield, R. A. Lanthanide single-molecule magnets. Chem. Rev. http://dx.doi.org/10.1021/cr400018q (2013).

  6. Jiang, S-D. et al. Series of lanthanide organometallic single-ion magnets. Inorg. Chem. 51, 3079–3087 (2012).

    Article  CAS  Google Scholar 

  7. Sorace, L., Benelli, C. & Gatteschi, D. Lanthanides in molecular magnetism: old tools in a new field. Chem. Soc. Rev. 40, 3092–3104 (2011).

    Article  CAS  Google Scholar 

  8. Baldoví, J. J., Borrás-Almenar, J. J., Clemente-Juan, J. M., Coronado, E. & Gaito-Ariño, A. Modelling the properties of lanthanoid single-ion magnets using an effective point-charge approach. Dalton Trans. 41, 13705–13710 (2012).

    Article  Google Scholar 

  9. Tang, J. K. et al. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew. Chem. Int. Ed. 45, 1729–1733 (2006).

    Article  CAS  Google Scholar 

  10. Chibotaru, L. F., Ungur, L. & Soncini, A. The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew. Chem. Int. Ed. 47, 4126–4129 (2008).

    Article  CAS  Google Scholar 

  11. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. Strong magnetic exchange and magnetic blocking in N23− radical-bridged lanthanide complexes. Nature Chem. 3, 538–542 (2011).

    Article  CAS  Google Scholar 

  12. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. A N23− radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 133, 14236–14239 (2011).

    Article  CAS  Google Scholar 

  13. Layfield, R. A., McDouall, J. J. W., Sulway, S. A., Tuna, F. & Winpenny, R. E. P. Influence of the N-bridging ligand in dimetallic organometallic dysprosium single molecule magnets. Chem. Eur. J. 16, 4442–4446 (2010).

    Article  CAS  Google Scholar 

  14. Katoh, K., Isshiki, H., Komeda, T. & Yamashita, M. Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem. Asian J. 7, 1154–1169 (2012).

    Article  CAS  Google Scholar 

  15. Urdampilleta, M., Cleuziou, J-P., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Supramolecular spin valves. Nature Mater. 10, 502–506 (2011).

    Article  CAS  Google Scholar 

  16. Vincent, R., Klyatskaya, S., Ruben, M, Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article  CAS  Google Scholar 

  17. Petit, S., Pilet, G., Luneau, D., Chibotaru, L. F. & Ungur, L. A dinuclear cobalt(II) complex of calix[8]arenes exhibiting strong magnetic anisotropy. Dalton Trans. 40, 4582–4588 (2007).

    Article  Google Scholar 

  18. Chibotaru, L. F. et al. Structure, magnetism and theoretical study of a mixed-valent CoII3CoIII4 heptanuclear wheel: lack of SMM behaviour despite negative magnetic anisotropy. J. Am. Chem. Soc. 130, 12445–12455 (2008).

    Article  CAS  Google Scholar 

  19. Ungur, L. & Chibotaru, L. F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 13, 20086–20090 (2011).

    Article  CAS  Google Scholar 

  20. Mondal, K-C. et al. Evidence for coexistence of distinct single-ion and exchange-based mechanisms for blocking of magnetization in a CoII2DyIII2 single molecule magnet. Angew. Chem. Int. Ed. 51, 7550–7554 (2012).

    Article  CAS  Google Scholar 

  21. Cucinotta, G. et al. Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. Angew. Chem. Int. Ed. 51, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  22. Finn, C. B. P., Orbach, R. & Wolf, W. P. Spin-lattice relaxation in cerium magnesium nitrate at liquid helium temperature: a new process. Proc. Phys. Soc. 77, 261–268 (1961).

    Article  CAS  Google Scholar 

  23. Blagg, R. J., Muryn, C. A., McInnes, E. J. L., Tuna, F. & Winpenny, R. E. P. Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew. Chem. Int. Ed. 50, 6530–6532 (2011).

    Article  CAS  Google Scholar 

  24. Luis, F. et al. Spin-lattice relaxation via quantum tunnelling in an Er3+ polyoxometallate single molecule magnet. Phys. Rev. B 82, 060403 (2010).

    Article  Google Scholar 

  25. Meihaus, K. R., Rinehart, J. D. & Long, J. R. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes. Inorg. Chem. 50, 8484–8489 (2011).

    Article  CAS  Google Scholar 

  26. Luzon, J. et al. Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear Ising model. Phys. Rev. Lett. 100, 247205 (2008).

    Article  Google Scholar 

  27. Cardona-Serra, S. et al. Lanthanoid single-ion magnets based on polyoxometallates with a 5-fold symmetry. The series [LnP5W30O110]12− (Ln3+ = Tb, Dy, Ho, Er, Tm and Yb). J. Am. Chem. Soc. 134, 14982–14990 (2012).

    Article  CAS  Google Scholar 

  28. Long, J. et al. Single-molecule magnet behaviour for an anti-ferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. J. Am. Chem. Soc. 133, 5319–5328 (2011).

    Article  CAS  Google Scholar 

  29. Guo, Y-N. et al. Strong axiality and Ising exchange interaction suppresses zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J. Am. Chem. Soc. 133, 11948–11951 (2011).

    Article  CAS  Google Scholar 

  30. Sulway, S. A., Layfield, R. A., Tuna, F., Wernsdorfer, W. & Winpenny, R. E. P. Single-molecule magnetism in cyclopentadienyl-dysprosium chlorides. Chem. Commun. 48, 1508–1510 (2012).

    Article  CAS  Google Scholar 

  31. Van den Broek J. & Van der Marel, L. C. Spin-lattice relaxation in rare earth ethylsulphates II. Physica 30, 565–587 (1964).

    Article  CAS  Google Scholar 

  32. Garanin, D. A. & Chudnovsky, E. M. Thermally activated resonant magnetization tunnelling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56, 11102–11118 (1997).

    Article  CAS  Google Scholar 

  33. Blagg, R. J., Tuna, F., McInnes, E. J. L. & Winpenny, R. E. P. Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet. Chem. Commun. 47, 10587–10589 (2011).

    Article  CAS  Google Scholar 

  34. Ganivet, C. R. et al. Influence of peripheral substitution on the magnetic behaviour of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem. Eur. J. 19, 1457–1465 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (UK), by the Flemish Science Foundation (fellowship to L.U.) and by the European Research Council Advanced Grant MolNanoSpin (number 226558) and ICT-2007.8.0 Future Emerging Technologies Open, Quantum Information Processing Specific Targeted Research Project number 211284 MolSpinQIP. R.E.P.W. thanks The Royal Society for a Wolfson research merit award, and financial support from the Institute for Nanoscale Physics and Chemistry and Methusalem programs at KU Leuven is gratefully acknowledged. We also acknowledge Diamond Light Source for access to synchrotron X-radiation.

Author information

Authors and Affiliations

Authors

Contributions

E.J.L.M., D.C. and R.E.P.W. designed the research. R.J.B., P.C. and J.S. made the compounds; R.J.B. also carried out the X-ray studies. L.U. and L.F.C. performed the ab initio calculations and proposed the interpretation. F.T. and W.W. performed the magnetic measurements. E.J.L.M., D.C. and R.E.P.W. co-wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Eric J. L. McInnes, Liviu F. Chibotaru or Richard E. P. Winpenny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3719 kb)

Supplementary information

Crystallographic data for compound 1.C6H14, [Gd4K2O(OtBu)12].C6H14 (CIF 106 kb)

Supplementary information

Crystallographic data for compound 2.C6H14, [Tb4K2O(OtBu)12].C6H14 (CIF 106 kb)

Supplementary information

Crystallographic data for compound 3.C6H14, [Dy4K2O(OtBu)12].C6H14 (CIF 113 kb)

Supplementary information

Crystallographic data for compound 4.C6H14, [Ho4K2O(OtBu)12].C6H14 (CIF 106 kb)

Supplementary information

Crystallographic data for compound 5.C6H14, [Er4K2O(OtBu)12].C6H14 (CIF 110 kb)

Supplementary information

Crystallographic data for compound 7.C6H14, [Y4K2O(OtBu)12].C6H14 (CIF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagg, R., Ungur, L., Tuna, F. et al. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nature Chem 5, 673–678 (2013). https://doi.org/10.1038/nchem.1707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing