Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activating catalysts with mechanical force

Abstract

Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(i) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept, catalysts used and reactions of mechanical catalyst activation.
Figure 2: Mechanochemical activation of a catalytic ring-closing metathesis (RCM) reaction.
Figure 3: The fate of catalyst 6b after activation by ultrasound.
Figure 4: Experimental evidence for a dissociative mechanism of the mechanical activation of the ruthenium–benzylidene catalyst 6b.
Figure 5: Mechanochemical activation of a catalytic ring-opening metathesis polymerization (ROMP).

Similar content being viewed by others

References

  1. Sinn, H., Kaminsky, W., Vollmer, H. J. & Woldt R. Living polymers on polymerization with extremely productive Ziegler catalysts. Angew. Chem. Int. Ed. 19, 390–392 (1980).

    Article  Google Scholar 

  2. Slugovc, C., Burtscher, D., Stelzer, F. & Mereiter K. Thermally switchable olefin metathesis initiators bearing chelating carbenes: Influence of the chelate's ring size. Organometallics 24, 2255–2258 (2005).

    Article  CAS  Google Scholar 

  3. Slaugh, L. H. & Mullineaux, R. D. Novel hydroformylation catalysts. J. Organomet. Chem. 13, 469–477 (1968).

    Article  CAS  Google Scholar 

  4. Sentman, A. C., Csihony, S., Waymouth, R. M. & Hedrick, J. L. Silver(i)–carbene complexes/ionic liquids: Novel N-heterocyclic carbene delivery agents for organocatalytic transformations. J. Org. Chem. 70, 2391–2393 (2005).

    Article  PubMed  Google Scholar 

  5. Gawin, R., Makal, A., Wozniak, K., Mauduit, M. & Grela, K. A dormant ruthenium catalyst bearing a chelating carboxylate ligand: In situ activation and application in metathesis reactions. Angew. Chem. Int. Ed. 46, 7206–7209 (2007).

    Article  CAS  Google Scholar 

  6. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, T. Q. & Kausch, H.-H. Mechanochemical degradation in transient elongational flow. Adv. Polym. Sci. 100, 73–182 (1992).

    Article  Google Scholar 

  9. Basedow, A. M. & Ebert, K. H. Ultrasonic degradation of polymer in solution. Adv. Polym. Sci. 22, 83–148 (1977).

    Article  CAS  Google Scholar 

  10. Encina, M. V., Lissi, E., Sarasua, M., Gargallo, L. & Radic, D. Ultrasonic degradation of polyvinylpyrrolidone—Effect of peroxide linkages. J. Polym. Sci., Polym. Lett. Ed. 18, 757–760 (1980).

    Article  CAS  Google Scholar 

  11. Berkowski, K. L., Potisek, S. L., Hickenboth, C. R. & Moore, J. S. Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38, 8975–8978 (2005).

    Article  CAS  Google Scholar 

  12. Paulusse, J. M. J. & Sijbesma, R. P. Reversible mechanochemistry of a Pd-ii coordination polymer. Angew. Chem. Int. Ed. 43, 4460–4462 (2004).

    Article  CAS  Google Scholar 

  13. Karthikeyan, S., Potisek, S. L., Piermattei, A. & Sijbesma, R. P. Highly efficient mechanochemical scission of silver–carbene coordination polymers. J. Am. Chem. Soc. 130, 14968–14969 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Marion, N., Diez-Gonzalez, S. & Nolan, S. P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 46, 2988–3000 (2007).

    Article  CAS  Google Scholar 

  15. Grasa, G. A., Kissling, R. M. & Nolan, S. P. N-hetercocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org. Lett. 4, 3583–3586 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Trnka, T. M. & Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ledoux, N., Allaert, B., Linden, A., Van der Voort, P. & Verpoort, F. Bis-coordination of N-(alkyl)-N′-(2,6-diisopropylphenyl) heterocyclic carbenes to Grubbs catalysts. Organometallics 26, 1052–1056 (2007).

    Article  CAS  Google Scholar 

  18. Dubreuil, M. F., Farcy, N. G. & Goethals, E. J. Influence of the alkyl group of triflate esters on their initiation ability for the cationic ring-opening polymerization of tetrahydrofuran. Macromol. Rapid Commun. 20, 383–386 (1999).

    Article  CAS  Google Scholar 

  19. Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A standard system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).

    Article  CAS  Google Scholar 

  20. Dias, E. L., Nguyen, S. T. & Grubbs, R. H. Well-defined ruthenium olefin metathesis catalysts: Mechanism and activity. J. Am. Chem. Soc. 119, 3887–3897 (1997).

    Article  CAS  Google Scholar 

  21. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. van der Zwaag, S., Schmets, A. J. M. & van der Zaken, G. (eds) Self Healing Materials (Springer, 2007).

Download references

Acknowledgements

This work was supported by grants from the Netherlands Organization for Scientific Research (NWO). We thank R.T.M. Jakobs for help with the synthesis of compounds 6 and 7.

Author information

Authors and Affiliations

Authors

Contributions

R.P.S. conceived the sonochemical catalyst activation experiment and directed the research. A.P. and S.K. performed the experiments. All of the authors participated in writing the paper.

Corresponding author

Correspondence to Rint P. Sijbesma.

Supplementary information

Supplementary information

Supplementary information (PDF 1727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piermattei, A., Karthikeyan, S. & Sijbesma, R. Activating catalysts with mechanical force. Nature Chem 1, 133–137 (2009). https://doi.org/10.1038/nchem.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing