Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The essential role of charge-shift bonding in hypervalent prototype XeF2

An Erratum to this article was published on 20 November 2015

This article has been updated

Abstract

Hypervalency in XeF2 and isoelectronic complexes is generally understood in terms of the Rundle–Pimentel model (which invokes a three-centre/four-electron molecular system) or its valence bond version as proposed by Coulson, which replaced the old expanded octet model of Pauling. However, the Rundle–Pimentel model is not always successful in describing such complexes and has been shown to be oversimplified. Here using ab initio valence bond theory coupled to quantum Monte Carlo methods, we show that the Rundle–Pimentel model is insufficient by itself in accounting for the great stability of XeF2, and that charge-shift bonding, wherein the large covalent–ionic interaction energy has the dominant role, is a major stabilizing factor. The energetic contribution of the old expanded octet model is also quantified and shown to be marginal. Generalizing to isoelectronic systems such as ClF3, SF4, PCl5 and others, it is suggested that charge-shift bonding is necessary, in association with the Rundle–Pimentel model, for hypervalent analogues of XeF2 to be strongly bonded.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Rundle–Pimentel orbital model for 3c–4e hypervalent complexes.
Figure 2: The three VB structures of F–Xe+ and their weights as calculated by the BOVB (upper line) and VB–VMC (lower line) methods, in the ps-VTZ basis set.
Figure 3: VB structures of XeF2 and their weights, as calculated at the VB–VMC/ps-VTZ level.

Similar content being viewed by others

Change history

  • 09 October 2015

    This Article was accepted on 28 February 2013. This information appeared incorrectly in the original versions of this Article and has now been corrected in the online versions.

References

  1. Bartlett, N. Xenon hexafluoroplatinate (V) Xe+PtF6. Proc. Chem. Soc. Lond. 218 (1962).

  2. Hope, R., Dähne, W., Rödder, K. M. & Mattauch, H. Fluorierung von Xenon. Angew Chem. 74, 903 (1962).

    Article  Google Scholar 

  3. Pauling, L. The Nature of the Chemical Bond 2nd edn, 145 (Cornell Univ. Press, 1940).

    Google Scholar 

  4. Rundle, R. E Probable structure of XeF4 and XeF2 . J. Am. Chem. Soc. 85, 112–113 (1963).

    Article  CAS  Google Scholar 

  5. Pitzer, K. S. Bonding in xenon fluorides and halogen fluorides. Science 139, 414 (1963).

    Article  CAS  Google Scholar 

  6. Kutzelnigg, W. Chemical bonding in higher main group elements. Angew Chem. Int. Ed. 23, 272–295 (1984).

    Article  Google Scholar 

  7. Malm, J. G., Selig, H., Jortner, J. & Rice, S. A. The chemistry of xenon. Chem. Rev. 65, 199–236 (1965).

    Article  CAS  Google Scholar 

  8. Reed, A. E. & Schleyer, P. v. R. Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation. J. Am. Chem. Soc. 112, 1434–1445 (1990).

    Article  CAS  Google Scholar 

  9. Musher, J. I. The chemistry of hypervalent molecules. Angew. Chem. Int. Ed. 8, 54–68 (1969).

    Article  CAS  Google Scholar 

  10. Reed, A. E. & Weinhold, F. On the role of d orbitals in SF6 . J. Am. Chem. Soc. 108, 3586–3593 (1986).

    Article  CAS  Google Scholar 

  11. Hach, R. J. & Rundle, R. E. The structure of tetramethylammonium pentaiodide. J. Am. Chem. Soc. 73, 4321–4324 (1951).

    Article  CAS  Google Scholar 

  12. Pimentel, G. C. The bonding of trihalide and bifluoride ions by the molecular orbital method. J. Chem. Phys. 19, 446–448 (1951).

    Article  CAS  Google Scholar 

  13. Munzarova, M. L. & Hoffmann, R. Electron-rich three-center bonding: role of s,p interactions across the p-block. J. Am. Chem. Soc. 124, 4787–4795 (2002).

    Article  CAS  Google Scholar 

  14. Coulson, C. A. The nature of the bonding in xenon fluorides and related molecules. J. Chem. Soc. 1442–1454 (1964).

  15. Pepkin, V. I., Lebedev, Y. A. & Apin, A. Y. Enthalpy of formation of xenon difluoride. Zh. Fiz. Khim. 43, 1564 (1969).

    Google Scholar 

  16. Weast, R. C. (ed.) Handbook of Chemistry and Physics 70th edn (CRC Press, 1989).

    Google Scholar 

  17. Bürger, H., Kuna, R., Ma, S., Breidung, J. & Thiel, W. The vibrational spectra of krypton and xenon difuorides—high-resolution infrared studies and ab initio calculations. J. Chem. Phys. 101, 1–14 (1994).

    Article  Google Scholar 

  18. Shaik, S., Danovich, D., Silvi, B., Lauvergnat, D. & Hiberty, P. C. Charge-shift bonding—a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem. Eur. J. 11, 6358–6371 (2005).

    Article  CAS  Google Scholar 

  19. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nature Chem. 1, 443–449 (2009).

    Article  CAS  Google Scholar 

  20. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structures Vol. 4 (van Nostrand Reinhold, 1979).

    Book  Google Scholar 

  21. Hiberty, P. C. & Shaik, S. Breathing-orbital valence bond method—a modern valence bond method that includes dynamic correlation. Theor. Chem. Acc. 108, 255–272 (2002).

    Article  CAS  Google Scholar 

  22. Braida, B., Toulouse, J., Caffarel, M. & Umrigar, C. J. Quantum Monte Carlo with Jastrow-valence-bond wave functions. J. Chem. Phys. 134, 084108 (2011).

    Article  Google Scholar 

  23. Petruzielo, F. R., Toulouse, J. & Umrigar, C. J. Approaching chemical accuracy with quantum Monte Carlo. J. Chem. Phys. 136, 124116 (2012).

    Article  CAS  Google Scholar 

  24. Bagus, P. S., Liu, B., Liskow, D. H. & Schaefer, H. F. Electron correlation and the reality of xenon difluoride. J. Am. Chem. Soc. 97, 7216–7219 (1975).

    Article  CAS  Google Scholar 

  25. Styszynski, J., Cao, X., Mali, G. L. & Visscher, L. Relativistic all-electron Dirac–Fock–Breit calculations on xenon fluorides (XeFn, n = 1, 2, 4, 6). J. Comput. Chem. 18, 601–608 (1997).

    Article  CAS  Google Scholar 

  26. Liao, M. S. & Zhang, Q. E. Chemical bonding in XeF2, XeF4, KrF2, KrF4, RnF2, XeCl2, and XeBr2: from the gas phase to the solid state. J. Phys. Chem. A 102, 10647–10654 (1998).

    Article  CAS  Google Scholar 

  27. Dixon, D. A., de Jong, W. A., Peterson, K. A., Christe, K. O. & Schrobilgen, G. Heats of formation of xenon fluorides and the fluxionality of XeF6 from high level electronic structure calculations. J. Am. Chem. Soc. 127, 8627–8634 (2005).

    Article  CAS  Google Scholar 

  28. Haiduke, R. L. A., Filho, H. P. M. & da Silva, A. B. F. A theoretical study on the XeF2 molecule. Chem. Phys. 348, 89–96 (2008).

    Article  CAS  Google Scholar 

  29. Perpointner, M. & Cederbaum, L. S. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n = 2, 4, 6). J. Chem. Phys. 122, 214302 (2005).

    Article  Google Scholar 

  30. Kraupp, M., van Wüllen, Ch., Franke, R., Schmitz, F. & Kutzelnigg, W. The Structure of XeF6 and of compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J. Am. Chem. Soc. 118, 11939–11950 (1996).

    Article  Google Scholar 

  31. Kurzydlowski, D., Zaleski-Ejgierd, P., Grochala, W. & Hoffmann, R. Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F) at large compression. Inorg. Chem. 50, 3832–3840 (2011).

    Article  CAS  Google Scholar 

  32. Weinstock, B., Weaver, E. E. & Knop, C. P. The xenon–fluorine system. Inorg. Chem. 5, 2189–2203 (1966).

    Article  CAS  Google Scholar 

  33. Berkowitz, J., Chupka, W. A., Guyon, P. M., Holloway, J. H. & Spohr, R. Photoionization mass spectrometric study of XeF2, XeF4, and XeF6 . J. Phys. Chem. 75, 1461–1471 (1971).

    Article  Google Scholar 

  34. Krouse, I. H. & Wenthold, P. G. Bond dissociation energy and Lewis acidity of the xenon fluoride cation. Inorg. Chem. 42, 4293–4298 (2003).

    Article  CAS  Google Scholar 

  35. Braida, B. & Hiberty, P. C. What makes the trifluoride anion F3 so special? A breathing-orbital valence bond ab initio study. J. Am. Chem. Soc. 126, 14890–14898 (2004).

    Article  Google Scholar 

  36. Shaik, S. & Hiberty, P. C. A Chemist's Guide to Valence Bond Theory 142 (Wiley, 2008).

    Google Scholar 

  37. Shaik, S. S. in An Encomium to Linus Pauling. Molecules in Natural Science and Medicine (eds Maksic, Z. B. & Maksic, M. E.) 253–266 (Ellis Horwood, 1991).

    Google Scholar 

  38. Shaik, S. & Shurki, A. VB diagrams and chemical reactivity. Angew Chem. Int. Ed. 38, 586–625 (1999).

    Article  Google Scholar 

  39. Chirgwin, H. B. & Coulson, C. A. The electronic structure of conjugated systems. VI. Proc. R. Soc. Lond. A 201, 196–209 (1950).

    Article  CAS  Google Scholar 

  40. Hiberty, P. C. & Shaik, S. A survey of recent developments in ab initio valence bond theory. J. Comput. Chem. 28, 137–151 (2007).

    Article  CAS  Google Scholar 

  41. van Lenthe, J. H. & Balint-Kurti, G. G. The valence-bond self-consistent field method (VB–SCF): theory and test calculations. J. Chem. Phys. 78, 5699–5713 (1983).

    Article  CAS  Google Scholar 

  42. Song, L., Wu, W., Mo, Y. & Zhang, Q. XMVB: an ab initio non-orthogonal valence bond program (Xiamen University, 2003).

    Google Scholar 

  43. Song, L., Mo, Y., Zhang, Q. & Wu, W. XMVB: a program for ab initio nonorthogonal valence bond computations. J. Comput. Chem. 26, 514–521 (2005).

    Article  CAS  Google Scholar 

  44. Song, L., Song, J., Mo, Y. & Wu, W. An efficient algorithm for energy gradients and orbital optimization in valence bond theory. J. Comput. Chem. 30, 399–406 (2009).

    Article  CAS  Google Scholar 

  45. Burkatzki, M., Filippi, C. & Dolg, M. Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J. Chem. Phys. 126, 234105 (2007).

    Article  CAS  Google Scholar 

  46. Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

    Article  CAS  Google Scholar 

  47. Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian, 2009).

    Google Scholar 

  48. Umrigar, C. J., Filippi, C. & Toulouse, J. CHAMP, a Quantum Monte Carlo program ab initio program; available at http://pages.physics.cornell.edu/~cyrus/champ.html

  49. Bartlett, N. & Sladky, F. O. Comprehensive Inorganic Chemistry Vol. 1 (eds Blair, J. C. & Emeleus, H. J.) Ch. 6 (Pergamon, 1973).

    Google Scholar 

Download references

Acknowledgements

The authors thank W. Wu and C.J. Umrigar for respectively making their XMVB and CHAMP code available to us.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the project. B.B. performed all the calculations. Both authors analysed the data. P.C.H. wrote the manuscript and the Supplementary Information. Both authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Benoît Braïda or Philippe C. Hiberty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braïda, B., Hiberty, P. The essential role of charge-shift bonding in hypervalent prototype XeF2. Nature Chem 5, 417–422 (2013). https://doi.org/10.1038/nchem.1619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing