Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled homocatenation of boron on a transition metal

Abstract

Only a handful of elements are able to be controllably homocatenated (that is, to be formed into one- or two-dimensional chains or rings of the element), because most have weak element–element bonds. Boron forms strong B–B bonds, but its favourable cluster formation makes homocatenation very difficult. Recently, the coupling of borylene (:BR) ligands on a metal was predicted computationally. We have brought this prediction to fruition experimentally, and extended it by adding two further borylene units, stepwise forming a B4 chain bound to a metal under mild conditions. This complex is a useful model for understanding the metal–boron interactions required to promote transition of the boron atoms from borylene ligands to oligoborane networks bound side-on. The concept shows great promise for the controlled construction of one-dimensional boron chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevant published synthetic results and summary of the syntheses performed herein.
Figure 2: Molecular structures as derived from X-ray crystallography.
Figure 3: Results of DFT calculations on complexes 2 (left) and 4 (right).

Similar content being viewed by others

References

  1. Pace, N. R. The universal nature of biochemistry. Proc. Natl Acad. Sci. USA 98, 805–808 (2001).

    Article  CAS  Google Scholar 

  2. Huheey, J. E., Keiter, E. A. & Keiter, R. L. Inorganic Chemistry 4th edn (Harper, 1995).

    Google Scholar 

  3. Miller, R. D. & Michl, J. Polysilane high polymers. Chem. Rev. 107, 1359–1410 (1989).

    Article  Google Scholar 

  4. Urry, G., Garrett, A. G. & Schlesinger, H. I. The chemistry of the boron subhalides. I. Some properties of tetraboron tetrachloride, B4Cl4 . Inorg. Chem. 2, 396–400 (1963).

    Article  CAS  Google Scholar 

  5. Hermannsdörfer, K. H., Matejčikova, E. & Nöth, H. Dimethylamino-polyborane. Chem. Ber. 103, 516–527 (1970).

    Article  Google Scholar 

  6. Nöth, H. & Pommerening, H. Hexakis(dimethylamino)cyclohexaborane, a boron(I) compound without electron deficiency. Angew. Chem. Int. Ed. 19, 482–483 (1980).

    Article  Google Scholar 

  7. Klusik, H. & Berndt, A. The radical anion from tetra-t-butyltetraborane(4), a new route to t-Bu4B4 . J. Organomet. Chem. 234, C17–C19 (1982).

    Article  CAS  Google Scholar 

  8. Baudler, M., Rockstein, K. & Oehlert, W. Tris(diethylamino)cyclotriborane and constitutional isomerism between cyclo- and closo-hexakis(diethylamino)hexaborane(6). Chem. Ber. 124, 1149–1152 (1991).

    Article  CAS  Google Scholar 

  9. Linti, G., Loderer, D., Nöth, H., Polborn, K. & Rattay, W. Reactions and structure of electron-precise triborane(5) and tetraborane(6) derivatives. Chem. Ber. 127, 1909–1922 (1994).

    Article  CAS  Google Scholar 

  10. Maier, C-J., Pritzkow, H. & Siebert, W. Blue tetrakis(diisopropylamino)-cyclo-tetraborane and yellow tetrakis(tetramethylpiperidino)tetrabora-tetrahedrane. Angew. Chem. Int. Ed. 38, 1666–1668 (1999).

    Article  CAS  Google Scholar 

  11. Kleier, D. A., Bicerano, J. & Lipscomb, W. N. Stereochemical rigidity and isomerization in B4H4 and B4F4. A theoretical study. Inorg. Chem. 19, 216–218 (1980).

    Article  CAS  Google Scholar 

  12. Davan, T. & Morrison, J. A. Tetrakis(t-butyl)tetraborane(4), Bu4tB4; synthesis of the first peralkyl derivative of a 2N framework electron count deltahedral borane. J. Chem. Soc. Chem. Commun. 250–251 (1981).

  13. Morrison, J. A. Chemistry of the polyhedral boron halides and the diboron tetrahalides. Chem. Rev. 91, 35–48 (1991).

    Article  CAS  Google Scholar 

  14. Menneckes, T., Paetzold, P., Boese, R. & Bläser, D. Tetra-tert-butyltetraboratetrahedrane. Angew. Chem. Int. Ed. 30, 173–175 (1991).

    Article  Google Scholar 

  15. Neu, A. et al. Tetra-tert-butyltetraborane(6) B4H2tBu4: a derivative in the series BnHn +2 . Angew. Chem. Int. Ed. 36, 2117–2119 (1997).

    Article  Google Scholar 

  16. Schnepf, A., Doriat, C., Möllhausen, E. & Schnöckel, H. A simple synthesis for donor-stabilized Ga2I4 and Ga3I5 species and the X-ray crystal structure of Ga3I5·3PEt3 . Chem. Commun. 2111–2112 (1997).

  17. Brothers, P. J. et al. A new In4 cluster with short In–In bonds in trigonal-planar In(InTrip2)3 . Angew. Chem. Int. Ed. 35, 2355–2357 (1996).

    Article  CAS  Google Scholar 

  18. Hill, M. S., Hitchcock, P. B. & Pongtavornpinyo, R. A linear homocatenated compound containing six indium centers. Science 311, 1904–1907 (2006).

    Article  CAS  Google Scholar 

  19. Green, S. P., Jones, C. & Stasch, A. ‘Dissolution’ of indium(I) iodide: synthesis and structural characterization of the neutral indium sub-halide cluster complex [In6I8(tmeda)4]. Angew. Chem. Int. Ed. 46, 8618–8621 (2007).

    Article  CAS  Google Scholar 

  20. Braunschweig, H., Kollann, C. & Rais, D. Transition-metal complexes of boron – new insights and novel coordination modes. Angew. Chem. Int. Ed. 45, 5254–5274 (2006).

    Article  CAS  Google Scholar 

  21. Braunschweig, H., Kollann, C. & Seeler, F. Transition metal borylene complexes. Struct. Bond. 130, 1–27 (2008).

    Article  CAS  Google Scholar 

  22. Braunschweig, H., Dewhurst, R. D. & Schneider, A. Electron-precise coordination modes of boron-centered ligands. Chem. Rev. 110, 3924–3957 (2010).

    Article  CAS  Google Scholar 

  23. Bissinger, P., Braunschweig, H., Kraft, K. & Kupfer, T. Trapping the elusive parent borylene. Angew. Chem. Int. Ed. 50, 4704–4707 (2011).

    Article  CAS  Google Scholar 

  24. Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011).

    Article  CAS  Google Scholar 

  25. Bissinger, P. et al. Generation of a carbene-stabilized bora-borylene and its insertion into a C–H bond. J. Am. Chem. Soc. 133, 19044–19047 (2011).

    Article  CAS  Google Scholar 

  26. Braunschweig, H., Colling, M., Hu, C. & Radacki, K. From classical to nonclassical metal–boron bonds: synthesis of a novel metallaborane. Angew. Chem. Int. Ed. 41, 1359–1361 (2002).

    Article  CAS  Google Scholar 

  27. Xu, L., Li, Q., King, R. B. & Schaefer, H. F. III. Coupling of fluoroborylene ligands to give a viable cyclopentadienyliron carbonyl complex of difluorodiborene (FB=BF). Organometallics 30, 5084–5087 (2011).

    Article  CAS  Google Scholar 

  28. Bertsch, S. et al. Towards homoleptic borylene complexes: incorporation of two borylene ligands into a mononuclear iridium species. Angew. Chem. Int. Ed. 49, 9517–9520 (2010).

    Article  CAS  Google Scholar 

  29. Braunschweig, H., Ye, Q. & Radacki, K. High yield synthesis of a neutral and carbonyl-rich terminal arylborylene complex. Chem. Commun. 48, 2701–2703 (2012).

    Article  CAS  Google Scholar 

  30. Braunschweig, H. et al. Borylene-based functionalization of iron-alkynyl-σ-complexes and stepwise reversible metal-boryl-to-borirene transformation: synthesis, characterization, and density functional theory studies. Inorg. Chem. 50, 62–71 (2011).

    Article  CAS  Google Scholar 

  31. Braunschweig, H. et al. Synthesis of 1-aza-2-borabutatriene rhodium complexes by thermal borylene transfer from [(OC)5Mo=BN(SiMe3)2]. Angew. Chem. Int. Ed. 50, 9462–9466 (2011).

    Article  CAS  Google Scholar 

  32. Braunschweig, H. et al. Borylene-based direct functionalization of organic substrates: synthesis, characterization, and photophysical properties of novel π-conjugated borirenes. J. Am. Chem. Soc. 131, 8989–8999 (2009).

    Article  CAS  Google Scholar 

  33. Braunschweig, H., Herbst, T., Rais, D. & Seeler, F. Synthesis of borirenes by photochemical borylene transfer from [(OC)5M=BN(SiMe3)2] (M = Cr, Mo) to alkynes. Angew. Chem. Int. Ed. 44, 7461–7463 (2005).

    Article  CAS  Google Scholar 

  34. Braunschweig, H., Forster, M., Kupfer, T. & Seeler, F. Borylene transfer under thermal conditions for the synthesis of rhodium and iridium borylene complexes. Angew. Chem. Int. Ed. 47, 5981–5983 (2008).

    Article  CAS  Google Scholar 

  35. Bellachioma, G., Cardaci, G., Macchioni, A. & Reichenbach, G. Preparation and characterization by 31P-NMR spectroscopy of mixed disubstituted [Fe(CO)3LL′] complexes. J. Organomet. Chem. 391, 367–376 (1990).

    Article  CAS  Google Scholar 

  36. Poliakoff, M. & Turner, J. J. Infrared spectrum and photochemistry of di-iron enneacarbonyl in matrices at 20 K: evidence for the formation of Fe2(CO)8 . J. Chem. Soc. A 2403–2410 (1971).

  37. Fletcher, S. C., Poliakoff, M. & Turner, J. J. Structure and reactions of octacarbonyldiiron: an IR spectroscopic study using carbon-13 monoxide, photolysis with plane-polarized light, and matrix isolation. Inorg. Chem. 25, 3597–3604 (1986).

    Article  CAS  Google Scholar 

  38. Fedrigo, S., Haslett, T. L. & Moskovits, M. Direct synthesis of metal cluster complexes by deposition of mass-selected clusters with ligand: iron with CO. J. Am. Chem. Soc. 118, 5083–5085 (1996).

    Article  CAS  Google Scholar 

  39. Cotton, F. A. & Troup, M. J. Accurate determination of a classic structure in the metal carbonyl field: nonacarbonyldi-iron. J. Chem. Soc. Dalton Trans. 800–802 (1974).

  40. Perrin, D. D. & Armarego, W. L. F. Purification of Laboratory Chemicals 3rd edn (Pergamon, 1988).

    Google Scholar 

  41. Blank, B. et al. Aminoborylene complexes of group 6 elements and iron: a synthetic, structural, and quantum chemical study. Chem. Eur. J. 13, 4770–4781 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Research Council (Advanced Investigator Grant to H.B.) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

H.B. conceived and supervised the study, Q.Y. performed the syntheses, A.V. performed the computational experiments and K.R. and A.D. performed the X-ray crystallographic measurements. R.D.D., Q.Y. and A.V. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Holger Braunschweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 658 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 19 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 20 kb)

Supplementary information

Crystallographic data for compound 4. (CIF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunschweig, H., Ye, Q., Vargas, A. et al. Controlled homocatenation of boron on a transition metal. Nature Chem 4, 563–567 (2012). https://doi.org/10.1038/nchem.1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing