Integrated 3D-printed reactionware for chemical synthesis and analysis


Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The Fab@Home Version 0.24 RC6 freeform fabricator.
Figure 2: The synthesis and crystallization of polyoxometalates in the 3D-printed reactionware.
Figure 3: The synthesis of heterocycle 3 in 3D-printed reactionware.
Figure 4: The 3D-printed reactionware used for in situ spectroscopies.
Figure 5: The 3D-printed electrochemical cell and electrodes.
Figure 6: The 3D-printed reactionware-assisted selective syntheses of C22H20N2O (4) and C22H19BrN2O (5).


  1. 1

    Marks, P., Campbell, M., Aron, J. & Lipson, H. 3D printing: second industrial revolution is under way (special report). New Sci. 2823, 17–20 (2011).

    Google Scholar 

  2. 2

    Geissler, M. & Xia, Y. Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Nakamura, M., Iwanaga, S., Henmi, C., Arai, K. & Nishiyama, Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2, 014110 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Lee, K-W., Wang, S., Dadsetan, M., Yaszemski, M. J. & Lu, L. Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures. Biomacromolecules 11, 682–689 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Hanson Shepherd, J. N. et al. 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv. Funct. Mater. 21, 47–54 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Cohen, D. L., Malone, E., Lipson, H. & Bonassar, L. J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 12, 1325–1335 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Stampfl, J. & Liska, R. New materials for rapid prototyping applications. Macromol. Chem. Phys. 206, 1253–1256 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater. 2, 265–271 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Hasegawa, T., Nakashima, K., Omatsu, F. & Ikuta, K. Multi-directional micro-switching valve chip with rotary mechanism. Sensor. Actuat. A Phys. 143, 390–398 (2007).

    Article  Google Scholar 

  12. 12

    Vilbrandt, T., Pasko, A. & Vilbrandt, C. Fabricating nature. Technoetic Arts 7, 165–174 (2009).

    Article  Google Scholar 

  13. 13

    Pearce, J. M. et al. 3-D printing of open source appropriate technologies for self-directed sustainable development. J. Sustain. Develop. 3, 17–29 (2010).

    Article  Google Scholar 

  14. 14

    Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Gratson, G. M., Xu, M. & Lewis, J. A. Microperiodic structures: direct writing of three-dimensional webs. Nature 428, 386 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Moore, J. L., McCuiston A., Mittendorf, I., Ottway, R. & Johnson, R. D. Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluid. Nanofluid. 10, 877–888 (2011).

    Article  Google Scholar 

  19. 19

    Fab@Home. The open-source personal fabricator project, (accessed 21/02/2012).

  20. 20

    Malone, E. & Lipson, H. Fab@Home: the personal desktop fabricator kit. Rapid Prototyping J. 13, 245–255 (2007).

    Article  Google Scholar 

  21. 21

    Parenty, A. D. C., Smith, L. V., Pickering, A. L., Long, D-L. & Cronin, L. General one-pot, three-step methodology leading to an extended class of N-heterocyclic cations: spontaneous nucleophilic addition, cyclization, and hydride loss. J. Org. Chem. 69, 5934–5946 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Richmond, C. J., Eadie, R. M., Parenty, A. D. C. & Cronin, L. Fine tuning reactivity: synthesis and isolation of 1,2,3,12b-tetrahydroimidazo[1,2-f] phenanthridines. J. Org. Chem. 74, 8196–8202 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Rhino3D, NURBS modeling for Windows, (McNeel, Barcelona).

  24. 24

    Kataria, A. & Rosen, D. W. Building around inserts: methods for fabricating complex devices in stereolithography. Rapid Prototyping J. 7, 253–261 (2001).

    Article  Google Scholar 

  25. 25

    Kortz, U., Savelieff, M. G., Bassil, B. S. & Dickman, M. H. A large, novel polyoxotungstate: [As(III)6W65O217(H2O)7]26–. Angew. Chem. Int. Ed. 40, 3384–3386 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Tanaka, N., Unoura, K. & Itabashi, E. Voltammetric and spectroelectrochemical studies of dodecamolybdophosphoric acid in aqueous and water–dioxane solutions at a gold-minigrid optically transparent thin-layer electrode. Inorg. Chem. 21, 1662–1666 (1982).

    CAS  Article  Google Scholar 

  27. 27

    Mandal, P. K. & McMurray, J. S. Pd–C induced catalytic transfer of hydrogen with triethylsilane. J. Org. Chem. 72, 6599–6601 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Boyle, M. M. et al. Mechanised materials. Chem. Sci. 2, 204–210 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Maldonado, A. G. & Rothenberg, G. Predictive modeling in homogeneous catalysis: a tutorial. Chem. Soc. Rev. 39, 1891–1902 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Browne, K. P., Walker, D. A., Bishop, K. J. M. & Grzybowski, B. A. Self-division of macroscopic droplets: partitioning of nanosized cargo into nanoscale micelles. Angew. Chem. Int. Ed. 49, 6756–6759 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Cooper, G. J. T. et al. Modular redox active inorganic chemical cells: iCHELLs. Angew. Chem. Int. Ed. 50, 10373–10376 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Murphy, R. F. An active role for machine learning in drug development. Nature Chem. Biol. 7, 327–330 (2011).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Engineering and Physical Sciences Research Council UK via Creativity@HOME. L.C. thanks the Royal Society/Wolfson Foundation for a Merit Award. We thank R.M. Eadie (University of Glasgow) for samples of 2-bromoethylphenanthridinium bromide and E. Malone and K. Kondo (NextFab Studio, Philadelphia) for assistance with building the fabricator.

Author information




L.C. conceived the idea and the organized the fabricator assembly, M.D.S., P.J.K., T.V., G.J.T.C. and R.W.B. designed the reactionware, M.D.S. and P.J.K. printed the devices, M.D.S., P.J.K., J.Y. and C.J.R. performed the experiments, L.C., M.D.S, P.J.K., J.Y. and C.J.R. analysed the results and M.D.S. and L.C. co-wrote the paper.

Corresponding author

Correspondence to Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 901 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 15090 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 9654 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 37 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 27 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Symes, M., Kitson, P., Yan, J. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chem 4, 349–354 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing