Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed long-range molecular migration energized by surface reaction

Abstract

The recoil of adsorbates away (desorption) and towards (reaction) surfaces is well known. Here, we describe the long-range recoil of adsorbates in the plane of a surface, and accordingly the novel phenomenon of reactions occurring at a substantial distance from the originating event. Three thermal and three electron-induced surface reactions are shown by scanning tunnelling microscopy to propel their physisorbed ethylenic products across the rough surface of Si(100) over a distance of up to 200 Å before an attachment reaction. The recoil energy in the ethylenic products comes from thermal exoergicity or from electronic excitation of chemisorbed alkenes. We propose that the mechanism of migration is a rolling motion, because the recoiling molecule overcomes raised surface obstacles. Electronic excitation of propene causes directional recoil and often end-to-end inversion, suggesting cartwheeling. Ab initio calculations of the halogenation and electron-induced reactions support a model in which asymmetric forces between the molecule and the surface induce rotation and therefore migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal dissociation of dihaloethanes.
Figure 2: Electron-induced ethylene migration.
Figure 3: Radial and angular distributions of electron-induced ethylene migration at various temperatures.
Figure 4: Electron-induced migration of chemisorbed propene.
Figure 5: Bias dependence of distance distribution.
Figure 6: DFT calculations of thermal and electron-induced recoil of ethylene.

Similar content being viewed by others

References

  1. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis 340–347 (Wiley, 1994).

    Google Scholar 

  2. Briner, B. G., Doering, M., Rust, H.-P. & Bradshaw, A. M. Microscopic molecular diffusion enhanced by adsorbate interactions. Science 278, 257–260 (1997).

    Article  CAS  Google Scholar 

  3. Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by internal vibration mode. Science 295, 2055–2058 (2002).

    Article  CAS  Google Scholar 

  4. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  5. Bartels, L., Wang, F., Möller, D., Knoesel, E. & Heinz, T. F. Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305, 648–651 (2004).

    Article  CAS  Google Scholar 

  6. Backus, E. H. G., Eichler, A., Kleyn, A. W. & Bonn, M. Real-time observation of molecular motion on a surface. Science 310, 1790–1793 (2005).

    Article  CAS  Google Scholar 

  7. Stépán, K., Güdde, J. & Höfer, U. Time-resolved measurement of surface diffusion induced by femtosecond laser pulses. Phys. Rev. Lett. 94, 236103 (2005).

    Article  Google Scholar 

  8. Gaudioso, J., Lee, H. J. & Ho, W. Vibrational analysis of single molecule chemistry: ethylene dehydrogenation on Ni(100). J. Am. Chem. Soc. 121, 8479–8485 (1999).

    Article  CAS  Google Scholar 

  9. Riedel, D. et al. Surface-isomerization dynamics of trans-stilbene molecules adsorbed on Si(100)-2×1. J. Am. Chem. Soc. 131, 5414–5423 (2009).

    Article  CAS  Google Scholar 

  10. Riedel, D. et al. Selective scanning tunneling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface. J. Am. Chem. Soc. 131, 7344–7352 (2009).

    Article  CAS  Google Scholar 

  11. Avouris, P. & Walkup, R. E. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem. 40, 173–206 (1989).

    Article  CAS  Google Scholar 

  12. Mayne, A. J., Dujardin, G., Comtet, G. & Riedel, D. Electronic control of single-molecule dynamics. Chem. Rev. 106, 4355–4378 (2006).

    Article  CAS  Google Scholar 

  13. Lu, P. H., Polanyi, J. C. & Rogers, D. Electron-induced ‘localized atomic reaction’ (LAR): chlorobenzene adsorbed on Si(111) 7×7. J. Chem. Phys. 111, 9905–9907 (1999).

    Article  CAS  Google Scholar 

  14. McNab, I. R. & Polanyi, J. C. Patterned atomic reaction at surfaces. Chem. Rev. 106, 4321–4354 (2006).

    Article  CAS  Google Scholar 

  15. Harikumar, K. R., McNab, I. R., Polanyi, J. C., Zabet-Khosousi, A. & Hofer, W. A. Imprinting self-assembled patterns of lines at a semiconductor surface, using heat, light, or electrons. Proc. Natl Acad. Sci. USA 108, 950–955 (2011).

    Article  CAS  Google Scholar 

  16. Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).

    Article  CAS  Google Scholar 

  17. Ertl, G. Reactions at Solid Surfaces 60–64 (Wiley, 2009).

    Book  Google Scholar 

  18. Clemen, L. et al. Adsorption and thermal behavior of ethylene on Si(100)-(2×1). Surf. Sci. 268, 205–216 (1992).

    Article  CAS  Google Scholar 

  19. Liu, H. & Hamers, R. J. Stereoselectivity in molecular–surface reactions: adsorption of ethylene to the silicon(001) surface. J. Am. Chem. Soc. 119, 7593–7594 (1997).

    Article  CAS  Google Scholar 

  20. Shimomura, M. et al. Atomistic morphology and structure of ethylene-chemisorbed Si(001)2×1 surface. Surf. Sci. 504, 19–27 (2002).

    Article  CAS  Google Scholar 

  21. Nagao, M. et al. Precursor mediated cycloaddition reaction of ethylene to the Si(100)c(4×2) surface. J. Am. Chem. Soc. 126, 9922–9923 (2004).

    Article  CAS  Google Scholar 

  22. Chung, C.-H., Jung, W.-J. & Lyo, I.-W. Trapping-mediated chemisorption of ethylene on Si(001)-c(4×2). Phys. Rev. Lett. 97, 116102 (2006).

    Article  Google Scholar 

  23. Zhang, Q. J., Fan, X. L., Lau, W. M. & Liu, Z.-F. Sublayer Si atoms as reactive centers in the chemisorption on Si(100): adsorption of C2H2 and C2H4 . Phys. Rev. B 79, 195303 (2009).

    Article  Google Scholar 

  24. Ryan, P. M., Teague, L. C. & Boland, J. J. Frontier orbital description of the Si(100) surface: a route to symmetry-allowed and concerted [2+2] cycloadditions. J. Am. Chem. Soc. 131, 6768–6774 (2009).

    Article  CAS  Google Scholar 

  25. Mette, G., Schwalb, C. H., Dürr, M. & Höfer, U. Site-selective reactivity of ethylene on clean and hydrogen precovered Si(001). Chem. Phys. Lett. 483, 209–213 (2009).

    Article  CAS  Google Scholar 

  26. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    Article  CAS  Google Scholar 

  27. Pitters, J. L. & Wolkow, R. A. Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy. Nano Lett. 6, 390–397 (2006).

    Article  CAS  Google Scholar 

  28. Yoder, N. L. et al. Quantifying desorption of saturated hydrocarbons from silicon with quantum calculations and scanning tunneling microscopy. Phys. Rev. Lett. 97, 187601 (2006).

    Article  CAS  Google Scholar 

  29. Lopinski, G. P., Moffatt, D. J., Wayner, D. D. M. & Wolkow, R. A. Determination of the absolute chirality of individual adsorbed molecules using the scanning tunneling microscope. Nature 392, 909–911 (1998).

    Article  CAS  Google Scholar 

  30. Lopinski, G. P., Moffatt, D. J., Wayner, D. D. M. & Wolkow, R. A. How stereoselective are alkene addition reactions on Si(100)? J. Am. Chem. Soc. 122, 3548–3549 (2000).

    Article  CAS  Google Scholar 

  31. Bartels, L., Wolf, M., Meyer, G. & Rieder, K.-H. On the diffusion of ‘hot’ adsorbates: a non-monotonic distribution of single particle diffusion lengths for CO/Cu(111). Chem. Phys. Lett. 291, 573–578 (1998).

    Article  CAS  Google Scholar 

  32. Ellistrem, M., Allgeier, M. & Boland, J. J. Dangling bond dynamics on the silicon(100)-2×1 surface: Dissociation, diffusion, and recombination. Science 279, 545–548 (1998).

    Article  Google Scholar 

  33. Dürr, M., Biedermann, A., Hu, Z., Höfer, U. & Heinz, T. F. Probing high-barrier pathways of surface reactions by scanning tunneling microscopy. Science 296, 1838–1841 (2002).

    Article  Google Scholar 

  34. Ohara, M., Kim, Y. & Kawai, M. Electric field response of a vibrationally excited molecule in an STM junction. Phys. Rev. B 78, 201405(R) (2008).

    Article  Google Scholar 

  35. Lyubinetsky, I., Mezhenny, S., Choyke, W. J. & Yates, J. T. Jr. Scanning tunneling microscope assisted nanostructure formation: two excitation mechanisms for precursor molecules. J. Appl. Phys. 86, 4949–4953 (1999).

    Article  CAS  Google Scholar 

  36. Polanyi, J. C. & Schreiber, J. L., The reaction of F+H2→HF+H; a case study in reaction dynamics. Faraday Discuss. Chem. Soc. 62, 267–290 (1977).

    Article  CAS  Google Scholar 

  37. Juurlink, L. B. F., Smith, R. R. & Utz . The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100). Faraday Discuss. 117, 147–160 (2000).

    Article  CAS  Google Scholar 

  38. Kolasinski, K. W. Surface Science: Foundations of Catalysis and Nanoscience 135–138 (Wiley, 2002).

    Google Scholar 

  39. Asscher, M., Guthrie, W. L., Lin, T.-H. & Somorjai, G. A. Energy redistribution among internal states of nitric oxide molecules upon scattering from Pt(111) crystal surface. J. Chem. Phys. 78, 6992–7004 (1983).

    Article  CAS  Google Scholar 

  40. Comtet, G. & Dujardin, G. Molecular nanomachines. J. Phys.: Condens. Matter 18, S1777 (2006); preface to special issue on molecular nanomachines. J. Phys.: Condens. Matter 18, S1777–S1966 (2006).

    CAS  Google Scholar 

  41. Grill, L. et al. Rolling a single molecular wheel at the atomic scale. Nature Nanotech. 2, 95–98 (2007).

    Article  CAS  Google Scholar 

  42. Harikumar, K. R. et al. Cooperative molecular dynamics in surface reactions. Nature Chem. 1, 716–721 (2009).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Jonsson, H., Mills, G. & Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J., Ciccotti, G., Coker, D. F.) (World Scientific, 1998).

    Google Scholar 

  46. Paier, J., Hirschl, R., Marsman, M. & Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005).

    Article  Google Scholar 

  47. Gavnholt, J., Olsen, T., Engelund, M. & Schiøtz, J. Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank I. R. McNab for critical discussions and for DFT calculations. J.C.P. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC), Photonics Research Ontario (PRO), an Ontario Centre of Excellence (OCE) and the Xerox Research Centre Canada (XRCC) for their support for this work. W.A.H. thanks the Royal Society of London for support. J.C.P. and W.A.H. also thank the Canadian Institute for Advanced Research (CIFAR) for support. A.Z.-K. is supported by an Ontario Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.R.H., J.C.P., and A.Z.-K. designed the research. K.R.H. and A.Z.-K. collected and analysed the experimental data. P.C., H.L. and W.A.H. performed the DFT and NEB calculations. All authors contributed to the manuscript.

Corresponding author

Correspondence to John C. Polanyi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harikumar, K., Polanyi, J., Zabet-Khosousi, A. et al. Directed long-range molecular migration energized by surface reaction. Nature Chem 3, 400–408 (2011). https://doi.org/10.1038/nchem.1029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing