Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dihydrogen contacts in alkanes are subtle but not faint

Abstract

Alkane molecules are held together in the crystal state by purportedly weak homonuclear R–H···H–R dihydrogen interactions. In an apparent contradiction, the high melting points and vaporization enthalpies of polyhedranes in condensed phases require quite strong intermolecular interactions. Two questions arise: ‘How strong can a weak C–H···H–C bond be?’ and ‘How do the size and topology of the carbon skeleton affect these bonding interactions?’ A systematic computational study of intermolecular interactions in dimers of n-alkanes and polyhedranes, such as tetrahedrane, cubane, octahedrane or dodecahedrane, showed that attractive C–H···H–C interactions are stronger than usually thought. We identified factors that account for the strength of these interactions, including the tertiary nature of the carbon atoms and their low pyramidality. An alkane with a bowl shape was designed in the search for stronger dihydrogen intermolecular bonding, and a dissociation energy as high as 12 kJ mol−1 is predicted by our calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size and polarizability effects on the intermolecular interactions of alkanes.
Figure 2: Size and pyramidality effects on the intermolecular interactions between polyhedranes.
Figure 3: Optimized geometries, shortest H···H contacts and BCPs in dimers of methane and polyhedranes.
Figure 4: H···H contacts in a dimer of a C20H30 buckybowlane.

Similar content being viewed by others

References

  1. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).

    Article  CAS  Google Scholar 

  2. Janiak, C. A critical account on ππ stacking in metal complexes with aromatic nitrogen-containing ligands. Dalton Trans. 3885–3896 (2000).

  3. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 47, 6114–6127 (2008).

    CAS  Google Scholar 

  4. Metrangolo, P. & Resnati, G. Halogen Bonding: Fundamentals and Applications (Springer, 2008).

    Book  Google Scholar 

  5. Risannen, K. Halogen bonded supramolecular complexes and networks. CrystEngComm. 10, 1107–1113 (2008).

    Article  Google Scholar 

  6. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

    Article  CAS  Google Scholar 

  7. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc. Chem. Res. 38, 386–395 (2005).

    Article  CAS  Google Scholar 

  8. Subramanian, S. & Zaworotko, M. J. Exploitation of the hydrogen bond: recent developments in the context of crystal engineering. Coord. Chem. Rev. 137, 357–401 (1994).

    Article  CAS  Google Scholar 

  9. Desiraju, G. R. Hydrogen bonds and other intermolecular interactions in organometallic crystals. Dalton Trans. 3745–3751 (2000).

  10. Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999).

    Google Scholar 

  11. Crabtree, R. H. A new type of hydrogen bond. Science 282, 2000–2001 (1998).

    Article  CAS  Google Scholar 

  12. Custelcean, R. & Jackson, J. E. Dihydrogen bonding: structures, energetics, and dynamics. Chem. Rev. 101, 1963–1980 (2001).

    Article  CAS  Google Scholar 

  13. Richardson, T. B., de Gala, S., Crabtree, R. H. & Siegbahn, P. E. M. Unconventional hydrogen bonds: intermolecular B–H···H–N interactions. J. Am. Chem. Soc. 117, 12875–12876 (1995).

    Article  CAS  Google Scholar 

  14. Calhorda, M. J. Weak hydrogen bonds: theoretical studies. Chem. Commun. 801–809 (2000).

  15. Braga, D., De Leonardis, P., Grepioni, F., Tedesco, E. & Calhorda, M. J. Structural and theoretical analysis of M–H···H–M and M–H···H–C intermolecular interactions. Inorg. Chem. 37, 3337–3348 (1998).

    Article  CAS  Google Scholar 

  16. Novoa, J. J. & Whangbo, M.-H. Interactions energies associated with short intermolecular contacts of C–H bonds. II: Ab initio computational study of the C–H···H–C interactions in methane dimer. J. Chem. Phys. 94, 4835–4841 (1991).

    Article  CAS  Google Scholar 

  17. Tsuzuki, S., Honda, K., Tadafumi, U. & Mikami, M. Magnitude of interaction between n-alkane chains and its anisotropy: high-level ab initio calculations of n-butane, n-pentane and n-hexane dimers. J. Phys. Chem. A 108, 10311–10316 (2004).

    Article  CAS  Google Scholar 

  18. Rossini, F. D., Pitzer, K. S., Arnett, R. L., Braun, R. M. & Pimentel, G. C. Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds (Carnegie, 1952).

    Google Scholar 

  19. Chickos, J. S. & Hanshaw, W. Vapor pressures and vaporization enthalpies for the n-alkanes from C31 to C38 at T=298.15 K by correlation gas chromatography. J. Chem. Eng. Data 49, 620–630 (2004).

    Article  CAS  Google Scholar 

  20. Tsuzuki, S. & Lüthi, H. P. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J. Chem. Phys. 114, 3949–3957 (2001).

    Article  CAS  Google Scholar 

  21. Li, A. H. T. & Chao, S. D. Intermolecular potentials of the methane dimer calculated with Møller–Plesset perturbation theory and density functional theory. J. Chem. Phys. 125, 094312 (2006).

    Article  Google Scholar 

  22. Prokhvatilov, A. I. & Isakina, A. P. An X-ray powder diffraction study of crystalline α-methane-d4 . Acta Crystallogr. B 36, 1576–1580 (1980).

    Article  Google Scholar 

  23. Lide, D. R. Handbook of Chemistry and Physics (CRC, 2003).

    Google Scholar 

  24. Maier, G. et al. Tetrakis(trimethylsilyl)tetrahedrane. J. Am. Chem. Soc. 124, 13819–13826 (2002).

    Article  CAS  Google Scholar 

  25. Tanaka, M. & Sekiguchi, A. Hexakis(trimethylsilyl)tetrahedranyltetrahedrane. Angew. Chem. Int. Ed. 44, 5821–5823 (2005).

    Article  CAS  Google Scholar 

  26. Imgartinger, H. et al. Tetra-tert-butyltetrahedrane – crystal and molecular structure. Angew. Chem. Int. Ed. 23, 993–994 (1984).

    Article  Google Scholar 

  27. Sekiguchi, A. & Tanaka, M. Tetrahedranyllithium: synthesis, characterization, and reactivity. J. Am. Chem. Soc. 125, 12684–12685 (2003).

    Article  CAS  Google Scholar 

  28. Amoreux, J. P. & Foulon, M. Comparison between structural analyses of plastic and brittle crystals. Acta Crystallogr. B 43, 470–479 (1987).

    Article  Google Scholar 

  29. Lee, C.-H., Liang, S., Haumann, T., Boese, R. & de Meijere, A. p-[32.56]Octahedrane, the (CH)12 hydrocarbon with D3d symmetry. Angew. Chem. Int. Ed. 32, 559–561 (1993).

    Article  Google Scholar 

  30. Fleischer, E. B. X-ray structure determination of cubane. J. Am. Chem. Soc. 86, 3889–3890 (1964).

    Article  CAS  Google Scholar 

  31. Bertau, M. et al. From pagodanes to dodecahedranes – search for a serviceable access to the parent (C20H20) hydrocarbon. Tetrahedron 53, 10029–10040 (1997).

    Article  CAS  Google Scholar 

  32. Gallucci, J. C., Doecke, C. W. & Paquette, L. A. X-ray structure analysis of the pentagonal dodecahedrane hydrocarbon (CH)20 . J. Am. Chem. Soc. 108, 1343–1344 (1986).

    Article  CAS  Google Scholar 

  33. Echeverría, J., Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. Molecules and crystals with both icosahedral and cubic symmetry. Chem. Commun. 2717–2725 (2008).

  34. Wolstenholme, D. J. & Cameron, T. S. Comparative study of weak interactions in molecular crystals: H–H bonds vs hydrogen bonds. J. Phys. Chem. A 110, 8970–8978 (2006).

    Article  CAS  Google Scholar 

  35. Robertson, K. N., Knop, O. & Cameron, T. S. C–H···H–C interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds. Can. J. Chem. 81, 727–743 (2003).

    Article  CAS  Google Scholar 

  36. Grabowski, S. J., Pfitzner, A., Zabel, M., Dubis, A. T. & Palusiak, M. Intramolecular H···H interactions for the crystal structures of [4-((E)-but-1-enyl)-2,6-dimethoxyphenyl]pyridine-3-carboxylate and [4-((E)-pent-1-enyl)-2,6-dimethoxyphenyl]pyridine-3-carboxylate; DFT calculations on modeled styrene derivatives. J. Phys. Chem. B 108, 1831–1837 (2004).

    Article  CAS  Google Scholar 

  37. Matta, C. F., Hernández-Trujillo, J., Tang, T.-H. & Bader, R. F. W. Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem. Eur. J. 9, 1940–1951 (2003).

    Article  CAS  Google Scholar 

  38. Bartell, L. S. On the effects of intramolecular van der Waals forces. J. Chem. Phys. 32, 827–831 (1960).

    Article  CAS  Google Scholar 

  39. Alkorta, I., Elguero, J. & Foces-Foces, C. Dihydrogen bonds (A–H···H–B). Chem. Commun. 1633–1634 (1996).

  40. Bader, R. F. W. Atoms in Molecules. A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  41. Rzepa, H. S. & Allan, C. S. M. Racemization of isobornyl chloride via carbocations: a nonclassical look at a classic mechanism. J. Chem. Educ. 87, 221–228 (2010).

    Article  CAS  Google Scholar 

  42. Castillo, N., Matta, C. F. & Boyd, R. J. The first example of a cage critical point in a single ring: a novel twisted α-helical ring topology. Chem. Phys. Lett. 409, 265–269 (2005).

    Article  CAS  Google Scholar 

  43. Bader, R. F. W. Bond paths are not chemical bonds. J. Phys. Chem. A 113, 10391–10396 (2009).

    Article  CAS  Google Scholar 

  44. Dunitz, J. D. & Gavezzotti, A. How molecules stick together in organic crystals: weak intermolecular interactions. Chem. Soc. Rev. 38, 2622–2633 (2009).

    Article  CAS  Google Scholar 

  45. Alvarez, S. & Echeverría, J. New perspectives on polyhedral molecules and their crystal structures. J. Phys. Org. Chem. 23, 1080–1087 (2010).

    Article  CAS  Google Scholar 

  46. Petrukhina, M. A. & Scott, L. T. Coordination chemistry of buckybowls: from corannulene to a hemifullerene. Dalton Trans. 2969–2975 (2005).

  47. Frisch, M. J. et al. Gaussian03 (Revision D.02) (Gaussian, Wallingford, Connecticut, USA, 2004).

  48. Werner, H.-J. et al. MOLPRO, a package of ab initio programs, version 2009.1 (Molpro, 2009).

  49. Keith, T. A. AIMAll version 10.12.08 (AIMAll, 2010).

  50. Ortiz, J. C. & Bo, C. XAIM (Universitat Rovira i Virgili, Tarragona, Spain, 1998).

Download references

Acknowledgements

This work was supported by the Ministerio de Investigación, Ciencia e Innovación (MICINN, project CTQ2008-06670-C02-01-BQU), Generalitat de Catalunya (grants 2009SGR-1459 and XRQTC) and the Israel Science Foundation (ISF Grant 53/09). Allocation of computer time at the Centre de Supercomputació de Catalunya is acknowledged. The authors thank A. Lledós, R. Hoffmann, S. Olivella, P. Alemany, E. Ruiz and H. Rzepa for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

J.E. carried out literature searches of related computational and experimental work, performed geometry optimizations and electron-density analysis of the dimers of open-chain alkanes, small polyhedranes and the buckybowlane, and participated in the preparation of graphic material for the manuscript. G.A. performed the geometry optimizations and electron-density analyses of the dimers of large polyhedranes. D.D. carried out benchmark calculations to help select the most adequate computational methodology. S.S. designed the benchmark and exploratory calculations. S.A. conceived the project, helped design the computational goals and strategies and wrote the manuscript. All authors actively participated in the discussion of the results and in the design of new computational experiments, and made contributions to the manuscript.

Corresponding authors

Correspondence to Sason Shaik or Santiago Alvarez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverría, J., Aullón, G., Danovich, D. et al. Dihydrogen contacts in alkanes are subtle but not faint. Nature Chem 3, 323–330 (2011). https://doi.org/10.1038/nchem.1004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing