Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Polyglutamine protein aggregates are dynamic

Abstract

Protein aggregation and the formation of inclusion bodies are hallmarks of the cytopathology of neurodegenerative diseases, including Huntington's disease, Amyotropic lateral sclerosis, Parkinson's disease and Alzheimer's disease. The cellular toxicity associated with protein aggregates has been suggested to result from the sequestration of essential proteins that are involved in key cellular events, such as transcription, maintenance of cell shape and motility, protein folding and protein degradation. Here, we use fluorescence imaging of living cells to show that polyglutamine protein aggregates are dynamic structures in which glutamine-rich proteins are tightly associated, but which exhibit distinct biophysical interactions. In contrast, the interaction between wild-type, but not mutant, Hsp70 exhibits rapid kinetics of association and dissociation similar to interactions between Hsp70 and thermally unfolded substrates. These studies provide new insights into the composite organization and formation of protein aggregates and show that molecular chaperones are not sequestered into aggregates, but are instead transiently associated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colocalization of TBP, 19Q, and Hsp70 fusions with 82Q or Htt-150Q aggregates.
Figure 2: FRAP and FLIP analysis of polyglutamine aggregates and colocalizing proteins.
Figure 3: FRET analysis reveals polymorphic interactions with polyglutamine aggregates.

Similar content being viewed by others

References

  1. Kopito, R. R. & Ron, D. Nature Cell Biol. 2, E207–E209 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Zoghbi, H. Y. & Orr, H. T. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Perry, G., Friedman, R., Shaw, G. & Chau, V. Proc. Natl Acad. Sci. USA 84, 3033–3036 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuzuhara, S., Mori, H., Izumiyama, N., Yoshimura, M. & Ihara, Y. Acta Neuropathol. 75, 345–353 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Davies, S. W. et al. Cell 90, 537–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Perez, M. K. et al. J. Cell Biol. 143, 1457–1470 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cummings, C. J. et al. Nature Genet. 19, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, J. B. N. Engl. J. Med. 340, 1970–1980 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Proc. Natl Acad. Sci. USA 96, 11404–11409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suhr, S. T. et al. J. Cell Biol. 153, 283–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rajan, R. S., Illing, M. E., Bence, N. F. & Kopito, R. R. Proc. Natl Acad. Sci. USA 98, 13060–13065 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nucifora, F. C. Jr, et al. Science 291, 2423–2428 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Stenoien, D. L. et al. Hum. Mol. Genet. 8, 731–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi, Y. et al. J. Biol. Chem. 275, 8772–8778 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M. & Bonini, N. M. Science 295, 865–868 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Patterson, G. H., Schroeder, S. C., Bai, Y., Weil, A. & Piston, D. W. Yeast 14, 813–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, D., Hinkley, C. S., Henry, R. W. & Huang, S. Mol. Biol. Cell 13, 276–284 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freeman, B. C., Myers, M. P., Schumacher, R. & Morimoto, R. I. EMBO J. 14, 2281–2292 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  20. Nagle, J. F. Biophys J. 63, 366–370 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nollen, E. A. et al. Proc. Natl Acad. Sci. USA 98, 12038–12043 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paulson, H. L. Am. J. Hum. Genet. 64, 339–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Igarashi, S. et al. Nature Genet. 18, 111–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Trettel, F. et al. Hum. Mol. Genet. 9, 2799–2809 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kao, C. C. et al. Science 248, 1646–1650 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Michels, A. A., Nguyen, V. T., Konings, A. W., Kampinga, H. H. & Bensaude, O. Eur. J. Biochem. 234, 382–389 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, D. & Huang, S. J. Cell Biol. 153, 169–76 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Biophys J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ellenberg, J. et al. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon, G. W., Berry, G., Liang, X. H., Levine, B. & Herman, B. Biophys J. 74, 2702–2713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Miller (Northwestern University Medical School) and his laboratory for advice and the use of their microscope facility for FRET analysis, S. Gines and M. MacDonald (Harvard University) for generously sharing reagents, C. Jolly, J. Widom, S. Huang and R. Holmgren for advice and comments on the paper, and use of the Cell Imaging Facilities in the Department of Cell and Molecular Biology at Northwestern Medical School and on the Evanston campus of Northwestern University. These studies were supported by grants to R.M. from the National Institutes of Health (NIGMS 38109), the Huntington Disease Society of America Coalition for the Cure, the Hereditary Disease Foundation, a Mechanisms in Aging and Dementia Training Programme from the National Institutes of Aging to S.K., the Netherlands Organization for Scientific Research and an European Molecular Biology Organization Long-Term Fellowship to E.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Morimoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Figure S1 Model of the dynamic organization of polyglutamine aggregates. (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Nollen, E., Kitagawa, K. et al. Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4, 826–831 (2002). https://doi.org/10.1038/ncb863

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing