Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior

Abstract

Microtubules and the plus-end-directed microtubule motor Kinesin I are required for the selective accumulation of oskar mRNA at the posterior cortex of the Drosophila melanogaster oocyte, which is essential to posterior patterning and pole plasm assembly. We present evidence that microtubule minus ends associate with the entire cortex, and that Kinesin and microtubules are not required for oskar mRNA association with the posterior pole, but prevent ectopic localization of this transcript and the pole plasm proteins Oskar and Vasa to other cortical regions. Cortical binding of oskar mRNA seems to be dependent on the actin cytoskeleton. We conclude that most of the actin-rich oocyte cortex can support pole plasm assembly, and propose that Kinesin restricts pole plasm formation to the posterior by moving oskar mRNA away from microtubule-rich lateral and anterior cortical regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Kinesin heavy chain mutation results in non-polar cortical localization of osk mRNA.
Figure 2: Microtubule minus-end markers are uniformly localized over the oocyte cortex.
Figure 3: Cytoskeletal function in RNA localization to the cortex.
Figure 4: The khc null mutation does not disrupt oocyte microtubule organization.
Figure 5: The khc mutation results in non-polar cortical localization of pole plasm proteins.
Figure 6: Pole plasm assembly is restricted to the microtubule-deficient posterior cortex.
Figure 7: A cortical exclusion model for posterior patterning.

Similar content being viewed by others

References

  1. van Eeden, F. & St Johnston, D. The polarisation of the anterior–posterior and dorsal–ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404 (1999).

    Article  CAS  Google Scholar 

  2. Riechmann, V. & Ephrussi, A. Axis formation during Drosophila oogenesis. Curr. Opin. Genet. Dev. 11, 374–383 (2001).

    Article  CAS  Google Scholar 

  3. Driever, W., Siegel, V. & Nüsslein-Volhard, C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development 109, 811–820 (1990).

    CAS  PubMed  Google Scholar 

  4. Kim-Ha, J., Smith, J. L. & Macdonald, P. M. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23–35 (1991).

    Article  CAS  Google Scholar 

  5. Ephrussi, A., Dickinson, L. K. & Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    Article  CAS  Google Scholar 

  6. St Johnston, D., Beuchle, D. & Nüsslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).

    Article  CAS  Google Scholar 

  7. Hay, B., Jan, L. Y. & Jan, Y. N. Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109, 425–433 (1990).

    CAS  PubMed  Google Scholar 

  8. Neuman-Silberberg, F. S. & Schüpbach, T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell 75, 165–174 (1993).

    Article  CAS  Google Scholar 

  9. Gonzalez-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  CAS  Google Scholar 

  10. Grunert, S. & St Johnston, D. RNA localization and the development of asymmetry during Drosophila oogenesis. Curr. Opin. Genet. Dev. 6, 395–402 (1996).

    Article  CAS  Google Scholar 

  11. Hays, T. & Karess, R. Swallowing dynein: a missing link in RNA localization? Nature Cell Biol. 2, E60–E62 (2000).

    Article  CAS  Google Scholar 

  12. Theurkauf, W. E. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol. 165, 352–360 (1994).

    Article  CAS  Google Scholar 

  13. Pokrywka, N. J. & Stephenson, E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55–66 (1991).

    CAS  PubMed  Google Scholar 

  14. Pokrywka, N. J. & Stephenson, E. C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363–370 (1995).

    Article  CAS  Google Scholar 

  15. Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L. Y. & Jan, Y. N. Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol. 4, 289–300 (1994).

    Article  CAS  Google Scholar 

  16. Brendza, R. P., Serbus, L. R., Duffy, J. B. & Saxton, W. M. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120–2122 (2000).

    Article  CAS  Google Scholar 

  17. Lane, M. E. & Kalderon, D. RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev. 8, 2986–2995 (1994).

    Article  CAS  Google Scholar 

  18. Micklem, D. R. et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol. 7, 468–478 (1997).

    Article  CAS  Google Scholar 

  19. Emmons, S. et al. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482–2494 (1995).

    Article  CAS  Google Scholar 

  20. Manseau, L. J. & Schüpbach, T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 1437–1452 (1989).

    Article  CAS  Google Scholar 

  21. Glotzer, J. B., Saffrich, R., Glotzer, M. & Ephrussi, A. Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr. Biol. 7, 326–337 (1997).

    Article  CAS  Google Scholar 

  22. Li, M., McGrail, M., Serr, M. & Hays, T. S. Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J. Cell Biol. 126, 1475–1494 (1994).

    Article  CAS  Google Scholar 

  23. Theurkauf, W. E., Smiley, S., Wong, M. L. & Alberts, B. M. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936 (1992).

    CAS  PubMed  Google Scholar 

  24. Cha, B. J., Koppetsch, B. S. & Theurkauf, W. E. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106, 35–46 (2001).

    Article  CAS  Google Scholar 

  25. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  Google Scholar 

  26. Moritz, M., Braunfeld, M. B., Guenebaut, V., Heuser, J. & Agard, D. A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biol. 2, 365–370 (2000).

    Article  CAS  Google Scholar 

  27. Clegg, N. J. et al. maelstrom is required for an early step in the establishment of Drosophila oocyte polarity: posterior localization of grk mRNA. Development 124, 4661–4671 (1997).

    CAS  PubMed  Google Scholar 

  28. Lin, H. & Spradling, A. C. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140–152 (1993).

    Article  CAS  Google Scholar 

  29. Karlin-Mcginness, M., Serano, T. L. & Cohen, R. S. Comparative analysis of the kinetics and dynamics of K10, bicoid, and oskar mRNA localization in the Drosophila oocyte. Dev. Genet. 19, 238–248 (1996).

    Article  CAS  Google Scholar 

  30. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  31. Gunawardane, R. N. et al. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 151, 1513–1524 (2000).

    Article  CAS  Google Scholar 

  32. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).

    CAS  PubMed  Google Scholar 

  33. Erdelyi, M., Michon, A. M., Guichet, A., Glotzer, J. B. & Ephrussi, A. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377, 524–527 (1995).

    Article  CAS  Google Scholar 

  34. Manseau, L., Calley, J. & Phan, H. Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116 (1996).

    CAS  PubMed  Google Scholar 

  35. Markussen, F. H., Michon, A. M., Breitwieser, W. & Ephrussi, A. Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723–3732 (1995).

    CAS  PubMed  Google Scholar 

  36. Rongo, C., Gavis, E. R. & Lehmann, R. Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121, 2737–2746 (1995).

    CAS  PubMed  Google Scholar 

  37. Ephrussi, A. & Lehmann, R. Induction of germ cell formation by oskar. Nature 358, 387–392 (1992).

    Article  CAS  Google Scholar 

  38. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002).

    CAS  PubMed  Google Scholar 

  39. Roth, S., Neuman-Silberberg, F. S., Barcelo, G. & Schüpbach, T. cornichon and the EGF receptor signaling process are necessary for both anterior–posterior and dorsal–ventral pattern formation in Drosophila. Cell 81, 967–978 (1995).

    Article  CAS  Google Scholar 

  40. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  Google Scholar 

  41. Tomancak, P. et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2, 458–460 (2000).

    Article  CAS  Google Scholar 

  42. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    Article  CAS  Google Scholar 

  43. Chou, T. B., Noll, E. & Perrimon, N. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369 (1993).

    CAS  Google Scholar 

  44. Theurkauf, W. E. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol. 44, 489–505 (1994).

    Article  CAS  Google Scholar 

  45. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Y. Zheng, A. Ephrussi, P. Lasko, E. Schejter, and T. Kaufman for antibodies used in this study. We also thank members of the Theurkauf lab and B. Saxton for comments on the manuscript. This work was supported by a Research Scholar Grant RGS CSM-101560 from the American Cancer Society awarded to W.E.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Theurkauf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, BJ., Serbus, L., Koppetsch, B. et al. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 4, 592–598 (2002). https://doi.org/10.1038/ncb832

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing