Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The molecular clutch model for mechanotransduction evolves

Many biological processes are influenced by the mechanical rigidity of surrounding tissues. Now, a combination of experiments and mathematical modelling has been used to describe the precise molecular and physical mechanism by which cells sense and respond to the mechanical properties of their extracellular environment through integrin-based adhesions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Roca-Cusachs model of the molecular clutch.


  1. Elosegui-Artola et. al. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  Google Scholar 

  2. Winograd-Katz, S. E., Fässler, R., Geiger, B. & Legate, K. R. Nat. Rev. Mol. Cell Biol. 15, 273–288 (2014).

    Article  CAS  Google Scholar 

  3. Dupont, S. et al. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  4. Wolfenson, H., Lavelin, I. & Geiger, B. Dev. Cell 24, 447–458 (2013).

    Article  CAS  Google Scholar 

  5. Lauffenburger, D. a. & Horwitz, A. F. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  6. Mitchison, T. & Cramer, L. Cell 84, 371–379 (1996).

    Article  CAS  Google Scholar 

  7. Mitchison, T. & Kirschner, M. Neuron 1, 761–772 (1988).

    Article  CAS  Google Scholar 

  8. Chan, C. E. & Odde, D. J. Science 322, 1687–1691 (2008).

    Article  CAS  Google Scholar 

  9. Plotnikov, S. V & Waterman, C. M. Curr. Opin. Cell Biol. 25, 619–626 (2013).

    Article  CAS  Google Scholar 

  10. Polte, T. R., Eichler, G. S., Wang, N. & Ingber, D. E. Am. J. Physiol. Cell Physiol. 286, 518–528 (2004).

    Article  Google Scholar 

  11. Thievessen, I. et al. J. Cell Biol. 202, 163–177 (2013).

    Article  CAS  Google Scholar 

  12. Zhang, X. et al. Nat. Cell Biol. 10, 1062–1068 (2008).

    Article  CAS  Google Scholar 

  13. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Nat. Rev. Mol. Cell Biol. 14, 503–17 (2013).

    Article  CAS  Google Scholar 

  14. Humphries, J. D. et al. J. Cell Biol. 179, 1043–1057 (2007).

    Article  CAS  Google Scholar 

  15. Del Rio, A. et al. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  16. Moser, M., Legate, K. R., Zent, R. & Fässler, R. Science 324, 895–899 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Clare M. Waterman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, V., Waterman, C. The molecular clutch model for mechanotransduction evolves. Nat Cell Biol 18, 459–461 (2016).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing