Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redeployment of Myc and E2f1–3 drives Rb-deficient cell cycles

Abstract

Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture. Here, we investigated how two critical proliferative pathways, Myc and E2f, are integrated to control cell cycles in normal and Rb-deficient cells using a murine intestinal model. We show that Myc and E2f1–3 have little impact on normal G1–S transitions. Instead, they synergistically control an S–G2 transcriptional program required for normal cell divisions and maintaining crypt–villus integrity. Surprisingly, Rb deficiency results in the Myc-dependent accumulation of E2f3 protein and chromatin repositioning of both Myc and E2f3, leading to the ‘super activation’ of a G1–S transcriptional program, ectopic S phase entry and rampant cell proliferation. These findings reveal that Rb-deficient cells hijack and redeploy Myc and E2f3 from an S–G2 program essential for normal cell cycles to a G1–S program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null cells on Myc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the small intestine by combined loss of Myc and E2f1–3.
Figure 2: S–G2 cell cycle arrest in E2f/Myc QKO progenitor cells.
Figure 3: Synergistic regulation of an S–G2 transcriptional program by Myc and E2f1–3.
Figure 4: Chromatin binding of E2f3 and Myc in wild-type tissues.
Figure 5: Rb-deficient cells require Myc to drive ectopic cell cycles.
Figure 6: Myc and E2f1–3 regulate an overlapping G1–S transcriptional program in Rb-null cells.
Figure 7: Rb loss redefines the chromatin-binding landscape of E2f3 and Myc.
Figure 8: Myc regulates E2f3a expression in Rb-deficient villi.

Similar content being viewed by others

References

  1. Bertoli, C., Skotheim, J. M. & de Bruin, R. A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, V. M. et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol. Cell Biol. 26, 8022–8031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hermeking, H. et al. Identification of CDK4 as a target of c-MYC. Proc. Natl Acad. Sci. USA 97, 2229–2234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 7, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 7, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Morrish, F., Neretti, N., Sedivy, J. M. & Hockenbery, D. M. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 7, 1054–1066 (2008).

    CAS  PubMed  Google Scholar 

  18. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sears, R., Ohtani, K. & Nevins, J. R. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell Biol. 17, 5227–5235 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams, M. R., Sears, R., Nuckolls, F., Leone, G. & Nevins, J. R. Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol. Cell Biol. 20, 3633–3639 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bettess, M. D. et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol. Cell Biol. 25, 7868–7878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, F. et al. Conditional deletion of c-myc does not impair liver regeneration. Cancer Res. 66, 5608–5612 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, D. et al. Division and apoptosis of E2f-deficient retinal progenitors. Nature 462, 925–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chong, J. L. et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wenzel, P. L. et al. Cell proliferation in the absence of E2F1-3. Dev. Biol. 351, 35–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 14, 1390–1399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai, S. Y. et al. Mouse development with a single E2F activator. Nature 454, 1137–1141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ireland, H. et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology 126, 1236–1246 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell Biol. 26, 8418–8426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ireland, H., Houghton, C., Howard, L. & Winton, D. J. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev. Dyn. 233, 1332–1336 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Phesse, T. J. et al. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ. 21, 956–966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serandour, A. A., Brown, G. D., Cohen, J. D. & Carroll, J. S. Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biol. 14, R147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gauthier, N. P. et al. Cyclebase.org–a comprehensive multi-organism online database of cell-cycle experiments. Nucleic Acids Res. 36, D854-9 (2008).

    PubMed  Google Scholar 

  41. Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9, 13–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9, 23–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Rustgi, A. K., Dyson, N. & Bernards, R. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352, 541–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Goodrich, D. W. & Lee, W. H. Abrogation by c-myc of G1 phase arrest induced by RB protein but not by p53. Nature 360, 177–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Heinen, C. D. et al. The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology 123, 751–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Morris, E. J. et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davidson, G. et al. Cell cycle control of wnt receptor activation. Dev. Cell 17, 788–799 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Cole, A. M. et al. Cyclin D2-cyclin-dependent kinase 4/6 is required for efficient proliferation and tumorigenesis following Apc loss. Cancer Res. 70, 8149–8158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leone, G. et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol. Cell Biol. 20, 3626–3632 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Z. F., Mott, S. & Rosmarin, A. G. The Ets transcription factor GABP is required for cell-cycle progression. Nat. Cell Biol. 9, 339–346 (2007).

    Article  PubMed  Google Scholar 

  54. Uribesalgo, I. et al. E-box-independent regulation of transcription and differentiation by MYC. Nat. Cell Biol. 13, 1443–1449 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sabo, A. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walz, S. et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511, 483–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Siddiqui, H., Fox, S. R., Gunawardena, R. W. & Knudsen, E. S. Loss of RB compromises specific heterochromatin modifications and modulates HP1α dynamics. J. Cell Physiol. 211, 131–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Petrella, L. N. et al. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 138, 1069–1079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Saenz-Robles, M. T. et al. Intestinal hyperplasia induced by simian virus 40 large tumor antigen requires E2F2. J. Virol. 81, 13191–13199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo, Y., Mahony, S. & Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. L. Rawahneh, N. Lovett and J. Moffitt for assistance with histology. We also acknowledge assistance from C. Martin for reviewing histological slides, S. Bae for advice on sequencing library construction, and V. Jin, Z. Ye and J. McElroy for suggestions on the analysis of sequencing data. This work was supported by the Microarray, Nucleic Acid and Analytical Cytometry Core Shared Resources at Ohio State University. We are grateful to V. Gopalan and A. Simcox for critical suggestions. This work was financially supported by NIH grants to G.L. (R01CA121275 and R01HD047470) and an NIH grant to J.M.P. (R01CA098956). H.L., T.P. and B.H. were recipients of Graduate, Postdoctoral and Undergraduate Pelotonia Fellowships, respectively.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and G.L. designed the experiments. H.L., P.D., B.H., S.R., N.F., A.B., R.K., C.K. and M.T.S.-R. performed the experiments, collected and analysed data. X.T., A.S., T.P., K.H., R.M. and P.C. performed bioinformatic and statistical analysis for the gene expression and ChIP-exo-seq data. Z.C. and Q.W. advised for the ChIP-exo-seq experiments. J.M.P. and G.L. supervised the study. H.L. and G.L. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Gustavo Leone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Loss of E2f1-3 and/or Myc in crypts.

(a) Dual staining of EdU (red) and geminin (green, included here for the composition of merged images) in crypts from intestines harvested 2 days after induction of Ah-cre expression. Nuclei were stained with DAPI (blue). Data are representative images from n = 3 mice per genetic group. (b) Quantification of EdU and geminin staining. Data presented as mean ± s.d., n = 3 mice per genetic group. (c) IHC staining of Myc in intestines harvested 2 days after induction of Ah-cre expression. Data are representative images from n = 3 mice for each genetic group. (d) Alcian Blue staining for goblet cells (blue) and IF staining of lysozyme for paneth cells (red) in intestines harvested 2 days after induction of Ah-cre expression. Nuclei were counterstained with Nuclear Fast Red or DAPI. Data are representative images from n = 3 mice per genetic group. Scale bars in a, c and d represent 50 μm.

Supplementary Figure 2 DNA binding of E2f3 and Myc in wild type crypts.

(a) IHC staining of E2f3 using the antibody (Millipore; 05-551) in control, E2f3a−/−, E2f3b−/− and Ah-cre;E2f1−/−;E2f2−/−;E2f3loxP/loxP intestines. Data are representative images from n = 2 mice per genetic group. E2f3b−/− but not E2f3a−/− intestines show positive-stained cells, indicating the specific recognition of E2f3a isoform by this antibody. Note the non-specific staining of blood cells. (b) Heatmap representation of differentially expressed genes in wild type crypts (n = 5) versus wild type villi (n = 5). P < 0.01, empirical Bayes method. (c) ChIP-exo-seq track examples showing E2f3 and Myc binding to selected G1-S and S-G2 related genes in wild type crypts. Examples are derived from pooled crypts (n = 32 mice). Scale bars in a represent 25 μm. Scale bars in c represent 1kb.

Supplementary Figure 3 Loss of either E2f1-3 or Myc corrects aberrant transcription in Rb KO villi.

RT-qPCR analysis of mRNA levels for a subset of genes in control, Rb KO, Rb/E2f QKO and Rb/Myc DKO villi. Expression levels from individual mice are plotted (2 or 3 per genetic group as indicated) and error bars represent mean ± s.d. from n = 3 technical replicates. The aberrant expression of these genes in Rb KO villi were normalized by loss of either E2f1-3 or Myc. The average expression level of control samples was set as 1.

Supplementary Figure 4 Peak summit-distance plots and tag intensity heatmaps across tissue compartments and genetic groups.

(a) Peak summit-distance plots for E2f3 summits that are associated with the 701 dysregulated genes in Rb KO villi. E2f3 binding is compared between crypts and villi of the same genetic group. (b) Heatmap representation of tag intensity for all E2f3 binding locations. E2f3 binding is compared between crypts and villi of the same genetic group. (c) Peak summit-distance plots for E2f3 summits that are associated with the 701 dysregulated genes in Rb KO villi. E2f3 binding is compared between control and Rb KO intestines. (d) Heatmap representation of tag intensity for all E2f3 binding locations. E2f3 binding is compared between control and Rb KO intestines. (e) Peak summit-distance plots for Myc summits that are associated with the 701 dysregulated genes in Rb KO villi. Myc binding is compared between crypts and villi of the same genetic group. (f) Heatmap representation of tag intensity for all Myc binding locations. Myc binding is compared between crypts and villi of the same genetic group. (g) Peak summit-distance plots for Myc summits that are associated with the 701 dysregulated genes in Rb KO villi. Myc binding is compared between control and Rb KO intestines. (h) Heatmap representation of tag intensity for all Myc binding locations. Myc binding is compared between control and Rb KO intestines. Data in this figure (ah) are derived from pooled crypts (n = 32 mice for control, n = 27 mice for Rb KO) or villi (n = 7 mice for control, n = 7 mice for Rb KO).

Supplementary Figure 5 E2f3 DNA binding in wild type and Rb KO villi.

(ac) Three main categories of target genes having different patterns of E2f3 DNA binding in wild type and Rb KO villi are illustrated: Group 1 includes target genes with E2f3 peaks present in Rb KO villi but absent in control villi; Group 2 includes target genes with distinct E2f3 peaks in control and Rb KO villi (either due to additional peak summits or peak position changes); Group 3 includes target genes with E2f3 peaks similarly positioned in control and Rb KO villi (but possibly with different magnitude of binding strengths). ChIP-exo-seq track examples are shown for group 1 (a), group 2 (b) and group 3 (c). Data in this figure are derived from pooled villi (n = 7 mice for control, n = 7 mice for Rb KO). Scale bars in ac represent 1kb.

Supplementary Figure 6 DNA binding strength and DNA binding motifs of all Myc and E2f3 peaks.

(a) Tag intensity plots (tags per bp per peak per 100M reads) around all peak summits identified in crypts and villi, as indicated. (b) Canonical DNA binding motifs (TTCCCGCC motif for E2f3, underlined with blue lines; CACGTG motif for Myc, underlined with reds lines) or strongest non-canonical motifs identified from all peak sequences in indicated genomic regions. Data in this figure are derived from pooled crypts (n = 32 mice for control, n = 27 mice for Rb KO) or villi (n = 7 mice for control, n = 7 mice for Rb KO).

Supplementary Figure 7 DNA binding motifs of Myc and E2f3 peaks associated with the 701 dysregulated genes in Rb KO villi.

Canonical DNA binding motifs (TTCCCGCC motif for E2f3, underlined with blue lines; CACGTG motif for Myc, underlined with reds lines) or strongest non-canonical motifs identified from peak sequences in indicated genomic regions of the 701 dysregulated gene in Rb KO villi. Data in this figure derived from pooled crypts (n = 32 mice for control, n = 27 mice for Rb KO) or villi of (n = 7 mice for control, n = 7 mice for Rb KO).

Supplementary Figure 8 Expression of Wnt/β-catenin targets in Rb KO villi and auto-regulation of E2fs.

(a) Venn diagram showing the overlap between the 701 genes dysregulated in Rb KO villi and the 111 Wnt/β-catenin target genes. (b) ChIP-exo-seq tracks showing E2f3 binding to the E2f1 and E2f2 loci. The differential binding between control and Rb KO villi is highlighted in blue. Examples are derived from pooled villi (n = 7 mice for control, n = 7 mice for Rb KO). Scale bars in b represent 1kb.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2312 kb)

Supplementary Table 1

Supplementary Information (XLSX 411 kb)

Supplementary Table 2

Supplementary Information (XLSX 51 kb)

Supplementary Table 3

Supplementary Information (XLSX 11 kb)

Supplementary Table 4

Supplementary Information (XLSX 859 kb)

Supplementary Table 5

Supplementary Information (XLSX 161 kb)

Supplementary Table 6

Supplementary Information (XLSX 31 kb)

Supplementary Table 7

Supplementary Information (XLSX 297 kb)

Supplementary Table 8

Supplementary Information (XLSX 34 kb)

Supplementary Table 9

Supplementary Information (XLSX 94 kb)

Supplementary Table 10

Supplementary Information (XLSX 9 kb)

Supplementary Table 11

Supplementary Information (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tang, X., Srivastava, A. et al. Redeployment of Myc and E2f1–3 drives Rb-deficient cell cycles. Nat Cell Biol 17, 1036–1048 (2015). https://doi.org/10.1038/ncb3210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing