Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency

Abstract

Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem cells (ESCs). Human ESCs (hESCs) contain 5-hydroxymethylcytosine (5hmC), which is generated through the oxidation of 5-methylcytosine by the TET enzyme family. Here we show that 5hmC levels increase significantly during reprogramming to human iPSCs mainly owing to TET1 activation, and this hydroxymethylation change is critical for optimal epigenetic reprogramming, but does not compromise primed pluripotency. Compared with hESCs, we find that iPSCs tend to form large-scale (100 kb–1.3 Mb) aberrant reprogramming hotspots in subtelomeric regions, most of which exhibit incomplete hydroxymethylation on CG sites. Strikingly, these 5hmC aberrant hotspots largely coincide ( 80%) with aberrant iPSC–ESC non-CG methylation regions. Our results suggest that TET1-mediated 5hmC modification could contribute to the epigenetic variation of iPSCs and iPSC–hESC differences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TET1 is associated with increased hydroxymethylation during human iPSC reprogramming.
Figure 2: Reprogramming confers a 5hmC epigenome in a pattern with a bias towards telomere-proximal regions in autosomes.
Figure 3: 5hmC is associated with gene activity and pluripotency regulatory networks in stem cells.
Figure 4: Aberrant 5hmC reprogramming hotspots cluster at subtelomeric regions.
Figure 5: 5hmC DhMRs largely overlap with non-CG-DMRs in a large-scale pattern.
Figure 6: Large-scale incomplete hydroxymethylation hotspots are characteristics of human iPSCs.
Figure 7: Large-scale hotspots are caused predominantly by aberrant CpG hydroxymethylation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koh, K. P. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wossidlo, M. et al. 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Article  Google Scholar 

  10. Dawlaty, M. M. et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, C. X. et al. Selective chemical labelling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PloS One 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szulwach, K. E. et al. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, H. & Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bock, C. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PloS One 5, e8888 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cortellino, S. et al. Thymine DNA glycosylase is essential for activeDNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szulwach, K. E. et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and ageing. Nat. Neurosci. 14, 1607–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, H. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 679–684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohen, N. M., Kenigsberg, E. & Tanay, A. Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Polo, J. M. et al. Cell type of origin influences the molecular and functionalproperties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hussein, S. M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chin, M. H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, W. et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc. Natl Acad. Sci. USA 108, 18283–18288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanna, J. H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues. Cell 143, 508–525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dawlaty, M. M. et al. Combined deficiency of tet1 and tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 14, 457–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daley, G. Q. et al. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4, 200–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dyachenko, O. V., Schevchuk, T. V., Kretzner, L., Buryanov, Y. I. & Smith, S. S. Human non-CG methylation: are human stem cells plant-like? Epigenetics 5, 569–572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okita, K. & Yamanaka, S. Induced pluripotent stem cells: opportunities and challenges. Phil. Trans. R. Soc. Lond. Ser. B 366, 2198–2207 (2011).

    Article  CAS  Google Scholar 

  50. Carey, B. W. et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9, 588–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Somers, A. et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28, 1728–1740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Gen. Biol. 10, R25 (2009).

    Article  Google Scholar 

  53. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Gen. Biol. 9, R137 (2008).

    Article  Google Scholar 

  54. Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14, 232–243 (2013).

    Article  PubMed  Google Scholar 

  55. Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotech. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Suhl, M. Santoro, S. Bray and C. Strauss for critical reading of the manuscript. We thank X. Huang from the Viral Vector Core of the Emory Neuroscience NINDS Core Facilities for preparing the retrovirus/lentivirus used in this study. We are grateful to J. Mowrey, V. Patel, C. Street and S. Namburi for support on Illumina Hiseq2000/Miseq sequencing. This study was supported in part by the National Institutes of Health (NS079625 and HD073162 to P.J.; MH089606 and HD24064 to S.T.W.), the Emory Genetics Discovery Fund, and the Autism Speaks grant (#7660 to X.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.W., S.T.W. and P.J. designed the study and interpreted the results. T.W. and H.W. analysed the data. T.W. performed most experiments; Y.L., L.L., X.L. performed 5hmC capture and parts of library preparation. M.Y. C-X.S, H.G. and C.H. assisted with the TAB-seq experiment and 5hmC capture experiment. A.D. and K.E.S. contributed to the Illumina sequencing; I.S.G. and M.K.R. contributed array CGH experiments. I-P.C., S.J.C., J.W.H., G.A., Y-s.Y. and Q.C. provided some of the hESC and hiPSC lines. T.W., S.T.W. and P.J. wrote the paper with assistance from H.W.

Corresponding authors

Correspondence to Stephen T. Warren or Peng Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1212 kb)

Supplementary Table 1

Supplementary Information (XLSX 10 kb)

Supplementary Table 2

Supplementary Information (XLSX 10 kb)

Supplementary Table 3

Supplementary Information (XLSX 10 kb)

Supplementary Table 4

Supplementary Information (XLSX 9 kb)

Supplementary Table 5

Supplementary Information (XLSX 9 kb)

Supplementary Table 6

Supplementary Information (XLSX 10 kb)

Supplementary Table 7

Supplementary Information (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Wu, H., Li, Y. et al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nat Cell Biol 15, 700–711 (2013). https://doi.org/10.1038/ncb2748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing