Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Centrosome amplification causes microcephaly

Abstract

Centrosome amplification is a hallmark of human tumours. In flies, extra centrosomes cause spindle position defects that result in the expansion of the neural stem cell (NSC) pool and consequently in tumour formation. Here we investigated the consequences of centrosome amplification during mouse brain development and homeostasis. We show that centrosome amplification causes microcephaly due to inefficient clustering mechanisms, where NSCs divide in a multipolar fashion producing aneuploid cells that enter apoptosis. Importantly, we show that apoptosis inhibition causes the accumulation of highly aneuploid cells that lose their proliferative capacity and differentiate, thus depleting the pool of progenitors. Even if these conditions are not sufficient to halt brain development, they cause premature death due to tissue degeneration. Our results support an alternative concept to explain the etiology of microcephaly and show that centrosome amplification and aneuploidy can result in tissue degeneration rather than overproliferation and cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Centrosome amplification in the developing CNS causes microcephaly.
Figure 2: Centrosome amplification does not impair neurogenesis.
Figure 3: Centrosome amplification does not cause spindle misorientation.
Figure 4: Centrosome amplification causes multipolar divisions.
Figure 5: Apoptosis in Plk4OE brains is p53 dependent.
Figure 6: Analysis of p53Plk4OE mutant brains.
Figure 7: Tissue degeneration and reduced lifespan on accumulation of aneuploid cells.

References

  1. Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol. 94, 549–556 (1982).

    CAS  Article  Google Scholar 

  2. Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    CAS  Article  Google Scholar 

  3. Zyss, D. & Gergely, F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 19, 334–346 (2009).

    CAS  Article  Google Scholar 

  4. Holland, A. J. & Cleveland, D. W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    CAS  Article  Google Scholar 

  5. Pihan, G. A. & Doxsey, S. J. The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol. 9, 289–302 (1999).

    CAS  Article  Google Scholar 

  6. Nigg, E. A. Origins and consequences of centrosome aberrations in human cancers. Int. J. Cancer 119, 2717–2723 (2006).

    CAS  Article  Google Scholar 

  7. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    CAS  Article  Google Scholar 

  8. Marthiens, V., Piel, M. & Basto, R. Never tear us apart—the importance of centrosome clustering. J. Cell Sci. 125, 3281–3292 (2012).

    CAS  Article  Google Scholar 

  9. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    CAS  Article  Google Scholar 

  10. Megraw, T. L., Sharkey, J. T. & Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 470–480 (2011).

    CAS  Article  Google Scholar 

  11. Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).

    CAS  Article  Google Scholar 

  12. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    CAS  Article  Google Scholar 

  13. Thornton, G. K. & Woods, C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501–510 (2009).

    CAS  Article  Google Scholar 

  14. Lizarraga, S. B. et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137, 1907–1917 (2010).

    CAS  Article  Google Scholar 

  15. Alderton, G. K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat. Cell Biol. 8, 725–733 (2006).

    CAS  Article  Google Scholar 

  16. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    CAS  Article  Google Scholar 

  17. Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    CAS  Article  Google Scholar 

  18. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    CAS  Article  Google Scholar 

  19. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    CAS  Article  Google Scholar 

  20. Cohen, E., Binet, S. & Meininger, V. Ciliogenesis and centriole formation in the mouse embryonic nervous system. An ultrastructural analysis. Biol. Cell 62, 165–169 (1988).

    CAS  Article  Google Scholar 

  21. Wilsch-Brauninger, M., Peters, J., Paridaen, J. T. & Huttner, W. B. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 139, 95–105 (2012).

    Article  Google Scholar 

  22. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  Article  Google Scholar 

  23. Besse, L. et al. Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing. Development 138, 2079–2088 (2011).

    CAS  Article  Google Scholar 

  24. Fode, C., Binkert, C. & Dennis, J. W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell Biol. 16, 4665–4672 (1996).

    CAS  Article  Google Scholar 

  25. Ko, M. A. et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat. Genet. 37, 883–888 (2005).

    CAS  Article  Google Scholar 

  26. Holland, A. J. et al. Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis. Mol. Biol. Cell 23, 1838–1845 (2012).

    CAS  Article  Google Scholar 

  27. Silver, D. L. et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13, 551–558 (2010).

    CAS  Article  Google Scholar 

  28. Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

    CAS  Article  Google Scholar 

  29. Pawlisz, A. S. et al. Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum. Mol. Genet. 17, 2441–2455 (2008).

    CAS  Article  Google Scholar 

  30. Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

    CAS  Article  Google Scholar 

  31. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  32. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  Article  Google Scholar 

  33. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    CAS  Article  Google Scholar 

  34. Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    CAS  Article  Google Scholar 

  35. Fish, J. L., Dehay, C., Kennedy, H. & Huttner, W. B. Making bigger brains-the evolution of neural-progenitor-cell division. J. Cell Sci. 121, 2783–2793 (2008).

    CAS  Article  Google Scholar 

  36. Pulvers, J. N. et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl Acad. Sci. USA 107, 16595–16600 (2010).

    CAS  Article  Google Scholar 

  37. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4, e6564 (2009).

    Article  Google Scholar 

  38. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    CAS  Article  Google Scholar 

  39. Egger, B., Boone, J. Q., Stevens, N. R., Brand, A. H. & Doe, C. Q. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007).

    Article  Google Scholar 

  40. Yang, Z., Loncarek, J., Khodjakov, A. & Rieder, C. L. Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat. Cell Biol. 10, 748–751 (2008).

    CAS  Article  Google Scholar 

  41. Gergely, F. & Basto, R. Multiple centrosomes: together they stand, divided they fall. Genes Dev. 22, 2291–2296 (2008).

    CAS  Article  Google Scholar 

  42. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115–125 (2005).

    CAS  Article  Google Scholar 

  43. Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011).

    CAS  Article  Google Scholar 

  44. Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843 (2007).

    CAS  Article  Google Scholar 

  45. Holland, A. J. et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684–2689 (2012).

    CAS  Article  Google Scholar 

  46. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    CAS  Article  Google Scholar 

  47. Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).

    CAS  Article  Google Scholar 

  48. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS  Article  Google Scholar 

  49. Faggioli, F., Wang, T., Vijg, J. & Montagna, C. Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum. Mol. Genet. 21, 5246–5253 (2012).

    CAS  Article  Google Scholar 

  50. Doxsey, S. Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol. Cell 10, 439–440 (2002).

    CAS  Article  Google Scholar 

  51. Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. 76, 717–728 (2005).

    CAS  Article  Google Scholar 

  52. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353–355 (2005).

    CAS  Article  Google Scholar 

  53. Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat. Cell Biol. 13, 1325–1334 (2011).

    CAS  Article  Google Scholar 

  54. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    CAS  Article  Google Scholar 

  55. Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913–926 (2010).

    CAS  Article  Google Scholar 

  56. Hussain, M. S. et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 90, 871–878 (2012).

    CAS  Article  Google Scholar 

  57. McIntyre, R. E. et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 8, e1003022 (2012).

    CAS  Article  Google Scholar 

  58. Arquint, C., Sonnen, K. F., Stierhof, Y. D. & Nigg, E. A. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 125, 1342–1352 (2012).

    CAS  Article  Google Scholar 

  59. Tang, C. J. et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790–4804 (2011).

    CAS  Article  Google Scholar 

  60. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Gene. 36, 1159–1161 (2004).

    CAS  Article  Google Scholar 

  61. Snape, K. et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat. Gene. 43, 527–529 (2011).

    CAS  Article  Google Scholar 

  62. Oromendia, A. B., Dodgson, S. E. & Amon, A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 26, 2696–2708 (2012).

    CAS  Article  Google Scholar 

  63. Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    CAS  Article  Google Scholar 

  64. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    CAS  Article  Google Scholar 

  65. Haydar, T.F., Ang, E. Jr & Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc. Natl Acad. Sci. USA 100, 2890–2895 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. El Marjou, C. Daviaud, M. Garcia, V. Dangles-Marie, C. Marais and I. Grandjean for transgenesis and general mouse care; D. Vignjevic, S. Fre, F. Ubelmann, A. Simon, L. Stimmer, M. Bornens and J. Sillibourne for sharing reagents and knowledge; S. Robine for her motivation, knowledge and help, which were particularly important in the initial phases of this project; O. Leroy for advice on 3D reconstructions; L. Sengmanivong, F. Waharte, V. Fraisier, O. Renaud and the Nikon imaging facility at the I. Curie for valuable help and advice with image acquisition; E. Nora, K. Ancelin, M. Attia and E. Heard for advise on DNA FISH; A. Bardin, N. Delgehyr, F. Gergely, I. Kazanis, M. Rujano, F. Bosveld and T. Maia for discussions and comments on the manuscript. We thank FRM and La Ligue contre le Cancer for financial support (V.M.). This work was supported by an ERC grant CentroStemCancer 242598, an FRM installation grant, an ATIP grant, the Institut Curie and the CNRS.

Author information

Authors and Affiliations

Authors

Contributions

V.M and R.B conceived the project. V.M carried out most of the experimental procedures. M.A.R. performed the time-lapse experiments and together with S.T. and P.P-G. helped with data analysis. C.P. performed the genotyping and generated reagents. V.M analysed most of the data with help from R.B. V.M. and R.B. wrote the manuscript. R.B. supervised the project.

Corresponding author

Correspondence to Renata Basto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 913 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marthiens, V., Rujano, M., Pennetier, C. et al. Centrosome amplification causes microcephaly. Nat Cell Biol 15, 731–740 (2013). https://doi.org/10.1038/ncb2746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing