Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Cdk1–APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch

Abstract

Despite the complexity and variety of biological oscillators, their core design invariably includes an essential negative feedback loop. In the Xenopus laevis embryonic cell cycle oscillator, this loop consists of the kinase cyclin B–Cdk1 and the ubiquitin ligase APC/CCdc20; active Cdk1 activates APC/CCdc20, which then brings about cyclin B degradation and inactivates Cdk1. Here we ask how this negative feedback loop functions quantitatively, with the aim of understanding what mechanisms keep the Cdk1–APC/CCdc20 system from settling into a stable steady state with intermediate levels of Cdk1 and APC/CCdc20 activity. We found that the system operates as a time-delayed, digital switch, with a time lag of 15 min between Cdk1 and APC/CCdc20 activation and a tremendously high degree of ultrasensitivity (nH≈17). Computational modelling shows how these attributes contribute to the generation of robust, clock-like oscillations. Principles uncovered here may also apply to other activator–repressor oscillators and help in designing robust synthetic clocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrasensitivity in the regulation of securin–CFP destruction by Cdk1.
Figure 2: Ultrasensitive degradation of cyclin A2–YFP and cyclin B1–CFP.
Figure 3: Ultrasensitive cyclin degradation enables limit cycle oscillations.
Figure 4: The EC50 values for APC/CCdc20 activation, Cdc25 phosphorylation and Wee1 phosphorylation are similar.
Figure 5: Time lags in the Xenopus embryonic cell cycle oscillator’s negative feedback loop.

Similar content being viewed by others

References

  1. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

  2. Thomas, R. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Ser. Synergetics 9, 180–193 (1981).

    Article  Google Scholar 

  3. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    Article  CAS  Google Scholar 

  4. Griffith, J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 20, 202–208 (1968).

    Article  CAS  Google Scholar 

  5. Tyson, J. J. & Othmer, H. G. The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol. 5, 1–62 (1978).

    CAS  Google Scholar 

  6. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  CAS  Google Scholar 

  7. Stricker, J., Cookson, S., Bennett, M., Tsimring, L. & Hasty, J. A fast, robust, and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  Google Scholar 

  8. Tsai, T. Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    Article  CAS  Google Scholar 

  9. Hara, K., Tydeman, P. & Kirschner, M. A cytoplasmic clock with the same periodas the division cycle in Xenopus eggs. Proc. Natl Acad. Sci. USA 77, 462–466 (1980).

    Article  CAS  Google Scholar 

  10. Murray, A. W. & Kirschner, M. W. Dominoes and clocks: the union of two views of the cell cycle. Science 246, 614–621 (1989).

    Article  CAS  Google Scholar 

  11. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12, 427–438 (2011).

    Article  CAS  Google Scholar 

  12. King, R. W. et al. A 20S complex containing CDC27 and CDC16catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  Google Scholar 

  13. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003).

    Article  CAS  Google Scholar 

  14. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 (2003).

    Article  CAS  Google Scholar 

  15. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Jr Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005).

    Article  CAS  Google Scholar 

  16. Felix, M. A., Labbe, J. C., Doree, M., Hunt, T. & Karsenti, E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 346, 379–382 (1990).

    Article  CAS  Google Scholar 

  17. Kim, S. Y. & Ferrell, J. E. Jr Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007).

    Article  CAS  Google Scholar 

  18. Trunnell, N. B., Poon, A. C., Kim, S. Y. & Ferrell, J. E. Jr Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol. Cell 41, 263–274 (2011).

    Article  CAS  Google Scholar 

  19. Mochida, S., Ikeo, S., Gannon, J. & Hunt, T. Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 28, 2777–2785 (2009).

    Article  CAS  Google Scholar 

  20. Izawa, D. & Pines, J. How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat. Cell Biol. 13, 223–233 (2011).

    Article  CAS  Google Scholar 

  21. Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79, 475–486 (1994).

    Article  CAS  Google Scholar 

  22. Minshull, J., Golsteyn, R., Hill, C. S. & Hunt, T. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9, 2865–2875 (1990).

    Article  CAS  Google Scholar 

  23. Foe, I. T. et al. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr. Biol. 21, 1870–1877 (2011).

    Article  CAS  Google Scholar 

  24. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 1994).

    Google Scholar 

  25. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  Google Scholar 

  26. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Gene. 12, 345–350 (1996).

    Article  CAS  Google Scholar 

  27. Coudreuse, D. & Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 468, 1074–1079 (2010).

    Article  CAS  Google Scholar 

  28. Oikonomou, C. & Cross, F. R. Rising cyclin-CDK levels order cell cycle events. PLoS One 6, e20788 (2011).

    Article  CAS  Google Scholar 

  29. Gavet, O. & Pines, J. Progressive activation of CyclinB1–Cdk1 coordinates entry to mitosis. Dev. Cell 18, 533–543 (2010).

    Article  CAS  Google Scholar 

  30. Georgi, A. B., Stukenberg, P. T. & Kirschner, M. W. Timing of events in mitosis. Curr. Biol. 12, 105–114 (2002).

    Article  CAS  Google Scholar 

  31. Kim, S. Y., Song, E. J., Lee, K. J. & Ferrell, J. E. Jr Multisite M-phase phosphorylation of Xenopus Wee1A. Mol. Cell Biol. 25, 10580–10590 (2005).

    Article  CAS  Google Scholar 

  32. Skotheim, J. M., Di Talia, S., Siggia, E. D. & Cross, F. R. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291–296 (2008).

    Article  CAS  Google Scholar 

  33. Doncic, A., Falleur-Fettig, M. & Skotheim, J. M. Distinct interactions select and maintain a specific cell fate. Mol. Cell 43, 528–539 (2011).

    Article  CAS  Google Scholar 

  34. Kimata, Y., Baxter, J. E., Fry, A. M. & Yamano, H. A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Mol. Cell 32, 576–583 (2008).

    Article  CAS  Google Scholar 

  35. Solomon, M. J., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M. W. Cyclin activation of p34cdc2. Cell 63, 1013–1024 (1990).

    Article  CAS  Google Scholar 

  36. Nash, P. et al. Multi-site phosphorylation of a CDK inhibitor sets a threshold for the onset of S-phase. Nature 414, 514–521 (2001).

    Article  CAS  Google Scholar 

  37. Smythe, C. & Newport, J. W. Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Meth. Cell Biol. 35, 449–468 (1991).

    Article  CAS  Google Scholar 

  38. Murray, A. W. Cell cycle extracts. Meth. Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  39. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chang and A. Poon for help obtaining purified Δ65-cyclin B1 and Cdk1AF proteins, S. Santos and J. Pomerening for cyclin B1–CFP and cyclin A2–YFP constructs, T. Tsai for sharing his findings on the effects of PD0166285 on Xenopus Wee1A and Myt1, R. Driscoll from the Cimprich laboratory for advice on freezing extracts, and G. Anderson, J. Chang, A. Moskaleva, T. Tsai and the rest of the Ferrell laboratory for scientific discussions and editorial suggestions. We also thank Pfizer for providing PD0166285. Q.Y. is an HHMI Fellow of the Damon Runyon Cancer Research Foundation (DRG-2081-11). This work was supported by the National Institutes of Health grant GM046383.

Author information

Authors and Affiliations

Authors

Contributions

Q.Y. carried out experiments and calculations, analysed data and helped write the paper. J.E.F. carried out calculations, analysed data and helped write the paper.

Corresponding author

Correspondence to James E. Ferrell Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 726 kb)

Supplementary Information

Supplementary Information (PDF 1130 kb)

Supplementary Table 1

Supplementary Information (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Ferrell, J. The Cdk1–APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol 15, 519–525 (2013). https://doi.org/10.1038/ncb2737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing