Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A unique Oct4 interface is crucial for reprogramming to pluripotency

Abstract

Terminally differentiated cells can be reprogrammed to pluripotency by the forced expression of Oct4, Sox2, Klf4 and c-Myc1,2. However, it remains unknown how this leads to the multitude of epigenetic changes observed during the reprogramming process. Interestingly, Oct4 is the only factor that cannot be replaced by other members of the same family to induce pluripotency3,4,5. To understand the unique role of Oct4 in reprogramming, we determined the structure of its POU domain bound to DNA. We show that the linker between the two DNA-binding domains is structured as an α-helix and exposed to the protein’s surface, in contrast to the unstructured linker of Oct1. Point mutations in this α-helix alter or abolish the reprogramming activity of Oct4, but do not affect its other fundamental properties. On the basis of mass spectrometry studies of the interactome of wild-type and mutant Oct4, we propose that the linker functions as a protein–protein interaction interface and plays a crucial role during reprogramming by recruiting key epigenetic players to Oct4 target genes. Thus, we provide molecular insights to explain how Oct4 contributes to the reprogramming process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystallographic structure of the Oct4POU:PORE complex.
Figure 2: The effect of mutations in the Oct4 linker on reprogramming activity.
Figure 3: Characterization of alanine mutations on the linker segment.
Figure 4: Surface view of the Oct4POU:PORE complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  3. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    Article  CAS  Google Scholar 

  4. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  5. Feng, B. et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol. 11, 197–203 (2009).

    Article  CAS  Google Scholar 

  6. Klemm, J. D., Rould, M. A., Aurora, R., Herr, W. & Pabo, C. O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994).

    Article  CAS  Google Scholar 

  7. Reményi, A. et al. Differential dimer activities of the transcription factor Oct-1 by DNA-induced interface swapping. Mol. Cell 8, 569–580 (2001).

    Article  Google Scholar 

  8. Reményi, A. et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 17, 2048–2059 (2003).

    Article  Google Scholar 

  9. Williams, D. C. Jr, Cai, M. & Clore, G. M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1–DNA ternary transcription factor complex. J. Biol. Chem. 279, 1449–1457 (2004).

    Article  CAS  Google Scholar 

  10. Jauch, R., Choo, S. H., Ng, C. K. & Kolatkar, P. R. Crystal structure of the dimeric Oct6 (POU3f1) POU domain bound to palindromic MORE DNA. Proteins 79, 674–677 (2011).

    Article  CAS  Google Scholar 

  11. Nishimoto, M. et al. Oct-3/4 maintains the proliferative embryonic stem cell state via specific binding to a variant octamer sequence in the regulatory region of the UTF1 locus. Mol. Cell Biol. 25, 5084–5094 (2005).

    Article  CAS  Google Scholar 

  12. Pesce, M., Gross, M. K. & Schöler, H. R. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 20, 722–732 (1998).

    Article  CAS  Google Scholar 

  13. Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004).

    Article  CAS  Google Scholar 

  14. Klemm, J. D. & Pabo, C. O. Oct-1 POU domain-DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev. 10, 27–36 (1996).

    Article  CAS  Google Scholar 

  15. Van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem. Cell 6, 369–381 (2010).

    Article  CAS  Google Scholar 

  16. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  Google Scholar 

  17. Ding, J., Xu, H., Faiola, F., Ma’ayan, A. & Wang, J. Oct4 links multiple epigenetic pathways to the pluripotency network. Cell Res. 22, 155–167 (2012).

    Article  CAS  Google Scholar 

  18. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  Google Scholar 

  19. Trotter, K. W. & Archer, T. K. The BRG1 transcriptional coregulator. Nucl. Recept. Signal. 6, e004 (2008).

    Article  Google Scholar 

  20. Hu, G. & Wade, P. A. NuRD and pluripotency: a complex balancing act. Cell Stem Cell 10, 497–503 (2012).

    Article  CAS  Google Scholar 

  21. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  Google Scholar 

  22. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  CAS  Google Scholar 

  23. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  Google Scholar 

  24. Adachi, K. & Schöler, H. R. Directing reprogramming to pluripotency by transcription factors. Curr. Opin. Genet. Dev. 22, 416–422 (2012).

    Article  CAS  Google Scholar 

  25. Schöler, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N. & Gruss, P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J. 8, 2551–2557 (1989).

    Article  Google Scholar 

  26. Mueller-Dieckmann, J. The open-access high-throughput crystallization facility at EMBL Hamburg. Acta Crystallogr. D 62, 1446–1452 (2006).

    Article  CAS  Google Scholar 

  27. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  28. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  29. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  30. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecularstructures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  32. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  33. Sauter, P. & Matthias, P. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Mol. Cell Biol. 18, 7397–7409 (1998).

    Article  CAS  Google Scholar 

  34. Tomilin, A. et al. Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell 103, 853–864 (2000).

    Article  CAS  Google Scholar 

  35. Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  Google Scholar 

  36. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  37. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  38. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  39. Fiser, A., Do, R. K. & Sali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X-ray diffraction experiments were performed on the ID23-1 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, and X12 and X13 at EMBL Hamburg, DESY. We are grateful to E. Fioravanti of the ESRF for providing assistance in using beamline ID23-1. We thank G. Bourenkov for invaluable assistance in crystallographic problem resolution and data collection. We thank A. Nolte for help with mass spectrometry measurements. We also thank R. Grindberg for critically reading, and A. Malapetsas and J. Bruder for editing the manuscript. We acknowledge the financial support from DFG (SPP1356 Pluripotency and Cellular Reprogramming priority program) AJ DFG SI 1695/1-2 and AJ DFG CO 975/1.

Author information

Authors and Affiliations

Authors

Contributions

D.E. and J.V. performed the experiments and wrote the manuscript; J.V., M.R.G. and V.P. collected and analysed the crystallographic data; V.C. performed the comparative modelling experiments and wrote the manuscript; H.v.B. performed the cycloheximide experiments; H.C.A.D. performed the MS experiments; M.J.A-B. analysed the proteomic data sets; D.H. performed the rescue experiments; and C.N. assessed the heterodimer formation ability of Oct4 and Sox2. All authors commented on the manuscript; and R.J., M.W. and H.R.S. as co-senior authors supervised the project and assisted in writing the manuscript.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3276 kb)

Supplementary Table 1 - 7

Supplementary Information (XLSX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esch, D., Vahokoski, J., Groves, M. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat Cell Biol 15, 295–301 (2013). https://doi.org/10.1038/ncb2680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing