Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression

Abstract

Eps8, a bi-functional actin cytoskeleton remodeller, is a positive regulator of cell proliferation and motility. Here, we describe an unrecognized mechanism regulating Eps8 that is required for proper mitotic progression: whereas Eps8 is stable in G1 and S phase, its half-life drops sharply in G2. This requires G2-specific proteasomal degradation mediated by the ubiquitin E3 ligase SCFFbxw5. Consistent with a short window of degradation, Eps8 disappears from the cell cortex early in mitosis, but reappears at the midzone of dividing cells. Failure to reduce Eps8 levels in G2 prolongs its localization at the cell cortex and markedly delays cell rounding and prometaphase duration. However, during late stages of mitosis and cytokinesis, Eps8 capping activity is required to prevent membrane blebbing and cell-shape deformations. Our findings identify SCFFbxw5-driven fluctuation of Eps8 levels as an important mechanism that contributes to cell-shape changes during entry into—and exit from—mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eps8 is a cell-cycle-regulated protein that undergoes Fbxw5-mediated proteasomal degradation specifically during G2/M.
Figure 2: Eps8 is a substrate of SCFFbxw5in vitro.
Figure 3: Fbxw5 contributes to timely displacement of Eps8 from the cell cortex at the onset of mitosis.
Figure 4: Fbxw5-mediated Eps8 degradation contributes to progression into metaphase.
Figure 5: Fbxw5-mediated Eps8 degradation contributes to timely cell rounding in early mitosis.
Figure 6: Failure to restore Eps8 levels induces membrane blebbing and cell-shape deformation after metaphase in HeLa cells.
Figure 7: MEF E p s 8−/− cells exhibit a post-metaphase membrane blebbing phenotype that can be rescued by re-expression of Eps8 versions with actin capping activity.
Figure 8

Similar content being viewed by others

References

  1. Fazioli, F. et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799–3808 (1993).

    Article  CAS  Google Scholar 

  2. Di Fiore, P. P. & Scita, G. Eps8 in the midst of GTPases. Int. J. Biochem. Cell Biol. 34, 1178–1183 (2002).

    Article  CAS  Google Scholar 

  3. Disanza, A. et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat. Cell Biol. 6, 1180–1188 (2004).

    Article  CAS  Google Scholar 

  4. Disanza, A. et al. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat. Cell Biol. 8, 1337–1347 (2006).

    Article  CAS  Google Scholar 

  5. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  Google Scholar 

  6. Scita, G. et al. An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J. Cell Biol. 154, 1031–1044 (2001).

    Article  CAS  Google Scholar 

  7. Hertzog, M. et al. Molecular basis for the dual function of Eps8 on actin dynamics: bundling and capping. PLoS Biol. 8, e1000387 (2010).

    Article  Google Scholar 

  8. Menna, E. et al. Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol. 7, e1000138 (2009).

    Article  Google Scholar 

  9. Yap, L. F. et al. Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28, 2524–2534 (2009).

    Article  CAS  Google Scholar 

  10. Frittoli, E. et al. The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35, 388–399 (2011).

    Article  CAS  Google Scholar 

  11. Manor, U. et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr. Biol. 21, 167–172 (2011).

    Article  CAS  Google Scholar 

  12. Maa, M. C., Hsieh, C. Y. & Leu, T. H. Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106–112 (2001).

    Article  CAS  Google Scholar 

  13. Chen, Y. J., Shen, M. R., Maa, M. C. & Leu, T. H. Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol. Cancer Ther. 7, 1376–1385 (2008).

    Article  CAS  Google Scholar 

  14. Wang, H., Patel, V., Miyazaki, H., Gutkind, J. S. & Yeudall, W. A. Role for EPS8 in squamous carcinogenesis. Carcinogenesis 30, 165–174 (2009).

    Article  Google Scholar 

  15. Xu, M. et al. Epidermal growth factor receptor pathway substrate 8 (Eps8) is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology 150, 2064–2071 (2009).

    Article  CAS  Google Scholar 

  16. Welsch, T., Endlich, K., Giese, T., Buchler, M. W. & Schmidt, J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett. 255, 205–218 (2007).

    Article  CAS  Google Scholar 

  17. Welsch, T. et al. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells. Exp. Cell Res. 316, 1914–1924 (2010).

    Article  CAS  Google Scholar 

  18. Clague, M. J. & Urbe, S. Ubiquitin: same molecule, different degradation pathways. Cell 143, 682–685 (2010).

    Article  CAS  Google Scholar 

  19. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  20. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  21. Zimmerman, E. S., Schulman, B. A. & Zheng, N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 20, 714–721 (2010).

    Article  CAS  Google Scholar 

  22. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  23. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  24. Puklowski, A. et al. The SCF-Fbxw5 E3-ubiquitin ligase is regulated by Plk4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 13, 1004–1009 (2011).

    Article  CAS  Google Scholar 

  25. Pagan, J. & Pagano, M. FBXW5 controls centrosome number. Nat. Cell Biol. 13, 888–890 (2011).

    Article  CAS  Google Scholar 

  26. Won, K. A. & Reed, S. I. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J. 15, 4182–4193 (1996).

    Article  CAS  Google Scholar 

  27. Takizawa, C. G. & Morgan, D. O. Control of mitosis by changes in thesubcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr. Opin. Cell Biol. 12, 658–665 (2000).

    Article  CAS  Google Scholar 

  28. Swaminathan, S. et al. RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. J. Cell Biol. 164, 965–971 (2004).

    Article  CAS  Google Scholar 

  29. Hu, J. et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev. 22, 866–871 (2008).

    Article  CAS  Google Scholar 

  30. Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).

    Article  CAS  Google Scholar 

  31. Li, T., Pavletich, N. P., Schulman, B. A. & Zheng, N. High-level expression and purification of recombinant SCF ubiquitin ligases. Methods Enzymol. 398, 125–142 (2005).

    Article  CAS  Google Scholar 

  32. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  Google Scholar 

  33. Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  Google Scholar 

  34. Wu, K., Kovacev, J. & Pan, Z. Q. Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol. Cell 37, 784–796 (2010).

    Article  CAS  Google Scholar 

  35. Provenzano, C. et al. Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp. Cell Res. 242, 186–200 (1998).

    Article  CAS  Google Scholar 

  36. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  37. Matthews, H. K. et al. Changes in ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev. Cell 23, 371–383 (2012).

    Article  CAS  Google Scholar 

  38. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115–125 (2005).

    Article  CAS  Google Scholar 

  39. Kunda, P. & Baum, B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 19, 174–179 (2009).

    Article  CAS  Google Scholar 

  40. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    Article  CAS  Google Scholar 

  41. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).

    Article  CAS  Google Scholar 

  42. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    Article  CAS  Google Scholar 

  43. Skaar, J. R. & Pagano, M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr. Opin. Cell Biol. 21, 816–824 (2009).

    Article  CAS  Google Scholar 

  44. D’Angiolella, V. et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).

    Article  Google Scholar 

  45. Skaar, J. R., Pagan, J. K. & Pagano, M. SnapShot: F box proteins I. Cell 137, 1160–1160 (2009) e1161.

    Article  CAS  Google Scholar 

  46. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

  47. Wu, G. et al. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  Google Scholar 

  48. Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell 20, 9–19 (2005).

    Article  CAS  Google Scholar 

  49. Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W. & Pavletich, N. P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  Google Scholar 

  50. Yang, C. S. et al. FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J. Biol. Chem. 280, 10083–10090 (2005).

    Article  CAS  Google Scholar 

  51. Deshaies, R. J. & Ferrell, J. E. Jr Multisite phosphorylation and the countdown to S phase. Cell 107, 819–822 (2001).

    Article  CAS  Google Scholar 

  52. Song, L. & Rape, M. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle 10, 52–56 (2011).

    Article  CAS  Google Scholar 

  53. Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol. 6, 1173–1179 (2004).

    Article  CAS  Google Scholar 

  54. Paluch, E., Sykes, C., Prost, J. & Bornens, M. Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol. 16, 5–10 (2006).

    Article  CAS  Google Scholar 

  55. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  Google Scholar 

  56. Akin, O. & Mullins, R. D. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841–851 (2008).

    Article  CAS  Google Scholar 

  57. Bear, J. E. Follow the monomer. Cell 133, 765–767 (2008).

    Article  CAS  Google Scholar 

  58. Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  Google Scholar 

  59. Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucl. Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  60. Petroski, M. D. & Deshaies, R. J. In vitro reconstitution of SCF substrate ubiquitination with purified proteins. Methods Enzymol. 398, 143–158 (2005).

    Article  CAS  Google Scholar 

  61. Pickart, C. M. & Raasi, S. Controlled synthesis of polyubiquitin chains. Methods Enzymol. 399, 21–36 (2005).

    Article  CAS  Google Scholar 

  62. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Ellenberg (EMBL, Heidelberg, Germany), B. Baum (MRC-LMCB, England) and D. Gerlich (IMBA, Austria) for their gifts of stable HeLa cell lines. P. Di Fiore, O. Gruss, B. Mardin and A. Maccario are acknowledged for helpful discussions, F. Milanesi for Eps8 purification, R. Geiß-Friedlander for Fbxw5 construct generation, U. Gern for excellent technical assistance, and B. Mardin, S. Barysch, A. Flotho and U. Winter for critical manuscript reading. This work was supported by the Deutsche Forschungsgemeinschaft (SPP136, ME2279/3-1; F.M and A.W.) and NoE RUBICON, by ALSAC and NIH (2R01GM069530) to B.A.S., by the Associazione Italiana per la Ricerca sul Cancro (AIRC) to G.S and A.D.; by the Italian Ministries of Education-University-Research (MIUR-PRIN), the International Association For Cancer Research, and the European Research Council to G.S.; B.A.S. is an Investigator of the Howard Hughes Medical Institute. M.F.C. is an HHMI fellow of the Damon Runyon Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.W. designed and carried out most experiments and wrote the manuscript. A.D. and G.S. carried out analysis of Eps8-knockout MEFs and contributed to experimental design and manuscript writing. N.R. and G.H. carried out some of the experiments. J.B. contributed to the generation of recombinant SCFFbxw5 complexes. M.C. and B.S. provided expert help in the reconstitution of SCF E3 ligases and provided neddylated Cul1/Rbx1 complexes. H.L. provided expert help in time-lapse microscopy and generated the videos. H.U. carried out mass spectrometry analysis. F.M. guided the project, designed experiments and wrote the manuscript.

Corresponding authors

Correspondence to Achim Werner or Frauke Melchior.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 963 kb)

Hela cells stably expressing H2B-RFP and Lifeact-GFP were treated with non-targeting siRNA (si-nt; Supplementary Videos S1) or siRNA targeting Fbxw5 (si-Fbxw5; Supplementary Videos S1).

72 h after transfection, z-stack images were acquired with 0.25 μm step width. The images were deconvolved using Wiener filtering. Image processing was performed using Cell Excellence imaging software (Olympus) and ImageJ (NIH, http://rsbweb.nih.gov/ij/). (AVI 2824 kb)

Downregulation of Fbxw5 has no dramatic impact on overall actin distribution.

Hela cells stably expressing H2B-RFP and Lifeact-GFP were treated with non-targeting siRNA (si-nt; Supplementary Videos S1) or siRNA targeting Fbxw5 (si-Fbxw5; Supplementary Videos S2). 72 h after transfection, z-stack images were acquired with 0.25 μm step width. The images were deconvolved using Wiener filtering. Image processing was performed using Cell Excellence imaging software (Olympus) and ImageJ (NIH, http://rsbweb.nih.gov/ij/). (AVI 3294 kb)

Downregulation of Fbxw5 delays progression into metaphase.

HeLa cells stably expressing α-tubulin-GFP (green) and H2B-RFP (red) were synchronized by a double thymidine/release protocol and transfected with non-targeting siRNA or si-Fbxw5 #3. 60 h after siRNA transfection, cells were subjected to fluorescence time-lapse analysis (12 h, 2.5 min intervals). Movies show representative time frames of cells undergoing mitosis. Scale bar, 10 μm. (AVI 27218 kb)

Failure to restore Eps8 levels induces membrane blebbing and cell shape deformation after metaphase in HeLa cells.

HeLa cells were synchronized by a double thymidine/release protocol and transfected with different combinations of si-nt, si-Eps8 and si-Fbxw5 #3. 60 h after siRNA transfection, cells were subjected to DIC time-lapse analysis (14 h, 1.42 min intervals). Videos show representative time frames of cells undergoing mitosis. Scale bar, 10 μm. (MOV 20211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, A., Disanza, A., Reifenberger, N. et al. SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression. Nat Cell Biol 15, 179–188 (2013). https://doi.org/10.1038/ncb2661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing